Speaker
Description
"Cancer is a complex disease system in which the extracellular microenvironment provides robust physicochemical cues to promote disease progression and resistance to therapy. Immunotherapies have been considered as an efficient therapeutic strategy to treat cancer and are being studied for their potential to improve prognosis and long-term survival of patients. While early clinical data shows the potential of immune therapy in treating liquid cancers, emerging evidence highlight the influence of microenvironmental factors on determining the efficacy of such therapeutic strategies to treat solid tumors. A detailed understanding of the interdependency between the microenvironment and cancer/immune cell interactions is needed to enable the efficient use of immunotherapy to treat solid cancers. Because of limitations inherent to existing model systems, development of advanced in vitro platforms including tumor microenvironment with immune cells are needed. In this talk, I will describe our efforts to create ex vivo platforms such as tumor-on-chip to study cancer cell-immune cell interactions within a tumor specific microenvironment. "
20967802387