Engineering in Precision Medicine

Jun 29, 2022, 5:30 PM
Room: S1

Room: S1

plenary-online P2 Plenary Session


Prof. Khademhosseini, Ali (Terasaki Institute for Biomedical Innovation)


Engineered materials that integrate advances in polymer chemistry, nanotechnology, and biological sciences have the potential to create powerful medical
therapies. Dr. Khademhosseini is interested in developing ‘personalized’ solutions that utilize micro- and nanoscale technolgoies to enable a range of therapies for organ failure, cardiovascular disease and cancer.In enabling this vision he works closely with clinicians (including interventional radiologists, cardiologists and surgeons). For example, he has developed numerous techniques in controlling the behavior of patient-derived cells to engineer artificial tissues and cell-based therapies. His group also aims to engineer tissue regenerative therapeutics using water-containing polymer networks called hydrogels that can regulate cell behavior. Specifically, he has developed photo-crosslinkable hybrid hydrogels that combine natural biomolecules with nanoparticles to regulate the chemical, biological, mechanical and electrical properties of gels. These functional scaffolds induce the differentiation of stem cells to desired cell types and direct the formation of vascularized heart or bone tissues. Since tissue function is highly dependent on architecture, he has also used microfabrication methods, such as microfluidics, photolithography, bioprinting, and molding, to regulate the architecture of these materials. He has employed these strategies to generate miniaturized tissues. To create tissue complexity, he has also developed directed assembly techniques to compile small tissue modules into larger constructs. It is anticipated that such approaches will lead to the development of next-generation regenerative therapeutics and biomedical devices.

Presentation materials

There are no materials yet.