Conveners
S12 Biofabrication with light-based technologies and high-definition printing
- Tiziano Serra
- Marcy Zenobi-Wong
Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Advances in biofabrication technologies offer unprecedented opportunities to capture salient features of tissue composition and thus guide the maturation of engineered constructs into mimicking functionalities of native organs. Light-based...
Various 3D Printing and Bioprinting approaches have proven useful for tissue engineering applications. The achievable spatial resolution of the most widespread technologies, such as for example extrusion, is usually in the range of hundreds of micrometers, limited by the intrinsic attributes of these methods. However, light-based technologies and in particular multiphoton lithography (MPL) can...
The exceptional properties of natural structures with density gradients (e.g. bone, sponges, bamboo) have stimulated the interest in reproducing such complex architectures harnessing biopolymer functionality. However, the possibility to generate a hierarchical structure comprising multiple density gradient has not yet demonstrated, mainly due to the lack of technological advancements in...
Introduction
While the two most-commonly applied approaches in tissue engineering (TE), namely the scaffold-based and the scaffold-free approach come with individual advantages but also drawbacks, Ovsianikov et al. proposed a third strategy for tissue engineering which combines the advantages of both approaches [1].
We propose here to utilize this third strategy to fabricate millimeter-size...
Introduction
Bone graft substitutes are typically provided as ceramic granules. Whilst they have undergone successful clinical implementation, they are not without limitations. These include brittleness, variable resorption rates and a lack of control over the microarchitecture, all of which can lead to poor integration of the graft and fibrous tissue formation at the interface. Porous...
Introduction
Microfluidic droplet-based bioprinting offers several advantages over conventional extrusion-based bioprinting methods such as (i) high-precision spatial patterning of the biologics (including cells, molecules, drugs and bioinks) and (ii) ease of their compartmentalization. These advantages, combined with high reproducibility of the generated microdroplets, facilitate...
INTRODUCTION. Volumetric bioprinting (VBP) is a recently developed light-based biofabrication method enabling the rapid generation of complex 3D structures within seconds. Short printing times combined with freedom of design allow for the advancement of novel in vitro models and physiologically relevant constructs. However, a more in-depth understanding of the effects of light-based...