Conveners
S16-1 Biomaterials from nature based on extracellular matrices: engineering, repopulation and regenerative potential
- Sylvia Nürnberger
- Andrea Barbero
Articular cartilage and osteochondral defect repair remain major clinical challenges. Biomaterial scaffolds currently in clinical use in orthopaedic medicine do not accurately mimic native tissues, and therefore do not preferentially promote tissue-specific regeneration when they are colonised by endogenous stem/progenitor cells post implantation. Tissue-specific extracellular matrix (ECM)...
"Introduction: Decellularization creates cell-free collagen-based extracellular matrices from native organs, which can be used as scaffolds for regenerative medicine applications1-8. This technique has gained much attention in recent times. However, there is still a limited understanding of scaffold responses in vivo post-transplantation and ways we can improve scaffold durability to withstand...
"Introduction:
Articular cartilage facilitates the frictionless movement of synovial joints, however, due to its avascular and aneural nature, it has limited ability to self-repair. Current treatments for cartilage defects elicit variable results – an issue that the field of tissue engineering has aimed to address; however, the inability to mirror the complexity of native tissue with...
"Introduction
Prolonged alveolar air leaks are post-surgical complications to routine lung resections and biopsies that are a significant cause of patient morbidity. Extended duration of chest tube drainage and emergency revision surgeries are the standard approaches for its clinical management. Transplantable decellularised pleural membrane patches as adjuncts to traditional intraoperative...
"INTRODUCTION
Cancer early detection is pivotal to patient survival. The small non-coding nucleic acid sequences, microRNA (miRNA) are a captivating molecular target for cancer early detection. miRNA are dysregulated during the early stages of cancer1, it is found in stable amounts in blood plasma and serum. Therefore, a minimally invasive liquid biopsy screening device would allow for point...
"Introduction
Growing clinical demands for electrical stimulation-based therapies for central nervous system applications requires the development of conductive biomaterials balancing conductivity, biocompatibility, and mechanical performance. Traditional conductive materials often induce scarring, due to their stiffness and poor biocompatibility, hindering their clinical translation and...
By its avascular nature and limited healing potential, articular cartilage (AC) defects are still challenging to cure, resulting in degenerative diseases such as osteoarthritis. Several clinical techniques aim to repair the AC; however, load-bearing and fully functional tissue recapitulation remain a significant hurdle. In the last few decades, tissue engineering has given hope for resolving...
"Introduction. Large critical size bone defect is one of the most challenging pathologies in orthopaedic surgery. NVD‑003 is an autologous scaffold-free cell-based osteogenic implant intended to improve bone healing in severe pathophysiological conditions. This study aims to investigate the therapeutic potential of NVD-003, an osteogenic graft derived from human adipose stem cells.
Methods....
"Unresolved inflammatory responses in chronic disorders such as diabetes, cancer, cardiovascular diseases, among others, often drive the onset of non-healing wounds. Endothelial cells (EC), the population of cells lining the inner layer of blood vessels, become dysfunctional under the pathophysiological context of chronic disorders and undergo endothelial-to-mesenchymal transition (EndMT),...
"Marine-based novel biomolecules are an emerging set of metabolites for the development of next-generation biomaterials, drugs, and pharmaceutical in vitro platforms [1]. Marine-derived drugs have the potential capacity against different sorts of cancers and isolation of marine-derived natural products has been in the center of attention in developing anticancer drugs because of their strong...