Conveners
S19 Biomimetic Approaches to Cardiovascular Regeneration: how and why?
- Petra Mela
- Elena De-Juan-Pardo
- Julia Marzi (Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen )
"Bioinspired polymer processing, with focus on improved control over biomaterial structure-function, is a research strategy that can play a critical role in facilitating the translation of a biomedical device. In this work, we utilize the specific example of tissue engineered heart valves to demonstrate this notion.
Valvular heart disease is currently treated with mechanical valves, which...
Introduction
There is a large number of synthetic polymers, which are generally suitable as implant materials due to their chemical, biological or mechanical properties. What many of them have in common, however, is the challenge of growing properly into the body, which poses design demands specifically to the implant’s surface. Requirements that many conventional plastic processing methods...
Introduction
Melt Electrowriting (MEW) is an versatile electric-field assisted fiber forming technique that has convincingly shown its potential for tissue engineering scaffolds both in vitro and in vivo. The additive manufacturing principle of MEW offers unparalleled possibilities to create precisley defined fibrous 3D architectures. The potential of design freedom with MEW is still largely...
Cardiovascular diseases are the major cause of death worldwide. The lack of autologous vessels that can be used in cardiovascular surgeries compel engineers to look for nowel solutions. The main assumption of vascular tissue engineering is to design and produce functional materials that replace damaged blood vessels and restore their proper functions. Tissue-engineered vascular grafts with...
Collagen fiber network architecture in the native heart valve leaflets is characterized by preferential orientation and curvilinear arrangement that allow adequate stress distribution and effective leaflet coaptation. Specifically for the mitral valve, collagen fibers are preferentially aligned towards the circumferential direction with a curvilinear arrangement that runs from the...
INTRODUCTION
Cardiovascular disease is one of the major causes of death worldwide [1]. Synthetic vascular grafts (SVG) and autograft vessels are the current treatment modalities but, are ineffective for vessels with a diameter lower than 6 mm due to compliance mismatch [2] and limited in both supply and anatomical variability, respectively. An alternative solution is via tissue engineered...
"Introduction: Ischemic heart disease is a major cause of human death worldwide owing to the heart’s minimal ability to repair following injury. Despite medical advances, current treatments are not able to regenerate the damaged heart tissue. Therefore, alternative strategies are being assayed to identify the proper strategy to induce heart regeneration. In this sense, cardiac tissue...
Introduction
Currently used prosthetic heart valves show multiple limitations, including a reduced ability to regenerate. In this study we developed a three-layered electrospun heart valve using a dual electrospinning setup with a special 3D printed collector. In this manner, not only the microscopic but also the macroscopic structure of native heart valves was imitated. Biocompatibility of...