Conveners
S13-2 Biofunctionalized surfaces for cellular and tissue engineering
- Rui L. Reis
Musculoskeletal tissue engineering (MTE) has proven to stimulate survival and differentiation of myoblasts towards tissue regeneration both in vitro and in vivo (1). In this field, different polymeric biomaterials have been employed to provide a biomimetic environment where cells can proliferate and differentiate into muscle tissue.
Polycaprolactone (PCL) is a synthetic aliphatic...
T cell activation is modulated by signaling molecules on the surface of antigen-presenting cells (APC); however, in recent years, it has become increasingly clear that cellular forces have a crucial role in T cell activation and subsequent effector responses. Therefore, understanding mechanical modulators is critical in advancing current immunotherapy approaches. To address underlying...
"[Introduction] Extracellular matrix (ECM) plays a critical role in the control of cell adhesion and growth as in vivo scaffold material, therefore the design of ECM-like or ECM-mimicking scaffold has been one of the powerful concepts to provide a successful culture platform for tissue engineering. However, by their molecular size, it has been a challenge to obtain highly purified ECM...
Introduction
Infection is the major cause of implant failure after breast reconstruction surgery [1]. Medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of clinically routinely used silicone implants for breast reconstruction [2-3]. Nevertheless, as with any implant, biodegradable scaffolds...
Introduction: Excessive immune response and development of bacterial infections are two major problems accompanying organ replacement and implant surgeries. Our group aims to develop bioactive coatings to address these issues. Poly(arginine) and hyaluronic acid (PAR/HA) layer-by-layer films are supramolecular thin films (thickness about 1µm) that are easy to build, with promising...
Introduction
Glioblastoma (GB) is the most frequent and lethal primary brain tumor. GB has currently no cure and the standard care regimens only provide patients a median survival of 12-15 months after diagnosis. Indeed, considering the unfeasibility of performing complete surgical resection and the low efficacy of chemoradiotherapy in eliminating the remaining GB cells, it is not possible to...
"Introduction: The Blood-Brain Barrier (BBB) is a dynamic interface which regulates the movement of solutes. The physical barrier consists of endothelial cells (ECs) with extrinsic barrier properties induced by interactions with the neurovascular unit (NVU). Neither static nor dynamic in vitro BBB models fully capture in vivo-like conditions, and while coculturing EC monolayers with other NVU...
"Introduction
Corneal regenerative medicine in recent times has taken a focus on the recapitulation of the limbal epithelial stem cell (LESC) niche. Located peripheral to the central cornea, this pool of stem cells is vital for the preservation of sight throughout adult life. The limbus as an anatomical feature has striking topographical characteristics which are readily observed using...
Introduction
Severe bone injuries can result in incapacities and thus affect a person's quality of life. Mesenchymal stem cells (MSCs) can be an alternative for bone healing by growing them on scaffolds that provide mechanical signals for differentiation. Such scaffolds can give the appropriate ques to the cells in order to induce their differentiation into mature osteoblasts and later on to...
Stem cells, especially human embryonic stem (hES) cells and human induced pluripotent stem (hiPS) cells, are attractive sources of cells for regenerative medicine and have been used in clinical trials. One of the difficulties of applying human pluripotent stem cells (hPS cells, including hES and hiPS cells) in the clinic is that hPS cells cannot be cultured on conventional tissue culture...