Introductory Cosmology

CosCOM 2023
Piyabut Burikham

Problems with Newtonian Cosmology

- Gravity attracts, mass should clump, universe should be dynamical → infinite universe as solution, i.e. no center to collapse to!
- Olber paradox → infinite universe forever exists has infinite radiation flux at any point!!

Space is dark \rightarrow Finite Universe with finite age!

- Infinite Universe existing ever forever must be utterly dark(run out of fuel), full of black holes.
- Finite Universe existing ever forever must have collapsed completely into single gigantic black hole.
- Alternatives emerge in General Relativity(GR);
 Closed, Flat, Open dynamical Universe

Hubble discoveries

- Using Cepheids' Period-Luminosity relation discovered by Henrietta Leavitt, establish that spiral "nebulae" are spiral galaxies! Hence Universe size is hundreds thousand times larger than believed at that time.
- (1929) Found linear relation between redshift&distance of far away galaxies,

$$z \equiv \frac{\lambda_O - \lambda_S}{\lambda_S} = \frac{\lambda_O}{\lambda_S} - 1, \quad v(\approx zc) = Kd$$

 This is called Hubble law, will derive later from FLRW metric.

GR -> spacetime lump = Universe

- Gravity = Spacetime curvature = κ energy&momentum density.
- Matter tells spacetime how to curve, Spacetime tells matter how to move. $\kappa = \frac{8\pi G}{c^4} = \text{unit conversion factor}$

$$G_{ab} = R_{ab} - \frac{1}{2} R g_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4} T_{ab}$$

Where $Ricci\ tensor R_{ab} = R^c_{\ acb}$ and the $Riemann\ curvature$ tensor is given by

$$R^{
ho}_{\ \sigma\mu\nu} = \partial_{\mu}\Gamma^{
ho}_{\ \nu\sigma} - \partial_{\nu}\Gamma^{
ho}_{\ \mu\sigma} + \Gamma^{
ho}_{\ \mu\lambda}\Gamma^{\lambda}_{\ \nu\sigma} - \Gamma^{
ho}_{\ \nu\lambda}\Gamma^{\lambda}_{\ \mu\sigma}$$

The energy-momentum tensor T_{ab} contains info of matter And energy distribution.

$$\left|\Gamma^{\mu}_{lphaeta}\equivrac{1}{2}g^{\mu\lambda}(\partial_{lpha}g_{eta\lambda}+\partial_{eta}g_{lpha\lambda}-\partial_{\lambda}g_{lphaeta})
ight|$$

Two more curvatures

 $R_{ab} = R_{adb}^d = -R_{abd}^d$ Ricci tensor:

$$R_{ab} = R_{ba}$$

 $R = R_a^a$ Ricci scalar:

• Ex: sphere
$$S^2$$
, $\{g_{ab}\} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2 \sin^2 \theta \end{pmatrix}$

(Use Mathematica to) compute

$$egin{aligned} R^{\phi}_{ heta\phi heta} &= 1, R^{ heta}_{\phi heta\phi} = \sin^2 heta, \ R_{ heta heta} &= 1, R_{\phi\phi} = \sin^2 heta, \ R &= rac{2}{a^2} \end{aligned}$$

Hyperbolic H^2 , $\sin \Rightarrow \sinh$, $R = -\frac{2}{3}$

$$R = -\frac{2}{a^2}$$

Cosmological principle(Newton&Einstein)

- Homogeneous universe: uniform and is the same everywhere
- Isotropic universe: is the same in every direction
- Homogeneity implies no special point in universe. Combined with Isotropy implies that there can't be special direction(anisotropy) and special observer in the universe.

FLRW metric ansatz

 Friedmann was the first (1922), most generic metric obeying cosmological principle

$$ds^{2} = c^{2}dt^{2} - R^{2}(t)(f^{2}(r)dr^{2} + r^{2}d\Omega); d\Omega = d\theta^{2} + \sin^{2}\theta d\phi^{2}$$

• From homogeneity, we demand that $R_{3D} = \frac{6k}{R^2(t)}$

Picture from https://pages.uoregon.edu/jschombe/cosmo/lectures/lec15.html

3D shape of Universe

(Use Mathematica to) compute

$$R_{3D} = \frac{1}{f^2(r)r^2R^2(t)} \left(2(f^2 - 1) + 4r\frac{f'}{f} \right) = \frac{6k}{R^2(t)}$$

- We can solve to obtain $f(r) = (1-kr^2)^{-1/2}$
- By redefining $r \to r\sqrt{k}$, $R(t) \to R(t)\sqrt{k}$.

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega \right), k = 1, 0, -1$$

Hubble law is natural.

$$\vec{r} = \boldsymbol{\varpi}_r R(t), \vec{v} = \boldsymbol{\varpi}_r \dot{R}(t) = \frac{R(t)}{R(t)} \boldsymbol{\varpi}_r R(t) \equiv H \vec{r},$$

Cosmological Principle obeyed:

$$\vec{v}_{12} = (\boldsymbol{\varpi}_{r1} - \boldsymbol{\varpi}_{r2}) \dot{R}(t) = H(\vec{r}_1 - \vec{r}_2) = H\vec{r}_{12}$$

Solve Einstein eqn. from this metric

$$G_{ab} = R_{ab} - \frac{1}{2} R g_{ab} = \frac{8\pi G}{c^4} T_{ab}$$

$$G_{00} = R_{00} - \frac{g_{00}}{2}R(icci) = 3\left(\frac{k}{R^2(t)} + H^2\right), H = \frac{\dot{R}}{R}$$

$$G_{rr} = R_{rr} - \frac{g_{rr}}{2}R(icci) = -\frac{1}{1 - kr^2}(1 + \dot{R}^2 + 2R\ddot{R}),$$

Rests are reduntant to (rr) – component.

- Assume perfect fluid: $T^{ab} = \left(\rho + \frac{P}{c^2}\right)u^a u^b Pg^{ab}$, $u^a = (c, \vec{0})$ in comoving frame
- Will use Mathematica to computé later.
- Note the relation in FLRW metric:

$$z = \frac{\lambda_O}{\lambda_S} - 1, \left[\frac{R_0}{R} = 1 + z \right]$$

Einstein field eqn. of FLRW metric

(tt-component);
$$\left(\frac{\dot{R}}{R}\right)^2 + \frac{k}{R^2} = \frac{8}{3}\pi G\rho$$

Friedmann equation

$$(rr - \text{component} \& tt - \text{component}); \quad \frac{\ddot{R}}{R} = -\frac{4}{3}\pi G(\rho + 3P)$$

Acceleration equation

Another redundant eqn. from

$$T_{b;a}^{a} = 0 \Rightarrow \dot{\rho} = -\frac{3R}{R}(\rho + P)$$
; conservation eqn.

• Observe that accelerated expansion requires $P < -\frac{\rho}{2}$

Linear equation of state

- To solve for 3 unknown $P, \rho, R(t)$, we still need what-so-called Equation of State (EoS), i.e., additional info about P, ρ
- For compact object, it could be polytrope $P=\rho^n$, or even $P=P(\mu,T), \rho=\rho(\mu,T)$
- But for cosmology, it suffices(?) to assume linear EoS $P = w\rho$
- Sub into conservation eqn. to obtain $\left(\frac{\rho}{\rho_0} = \left(\frac{R_0}{R}\right)^{3(1+w)}\right)$
- Sub into Friedmann eqn. to obtain

$$R(t) \sim t^{\frac{2}{3(1+w)}} \text{ for } w \neq -1,$$

$$R(t) \sim e^{Ht} \text{ for } w = -1$$

3 main eras of Universe

• radiation-dominated: $w_r = \frac{1}{3}, \frac{\rho}{\rho} = \left(\frac{R_0}{R}\right)^4, R \sim t^{1/2}$

extremely hot so that most particles can treated relativistically.

- matter-dominated: $w_m = 0, \frac{\rho}{\rho_0} = \left(\frac{R_0}{R}\right)^3, R \sim t^{2/3}$
 - cold enough to treat as non-relativistic particle \rightarrow simplified to "dust".
- Dark energy dominated: $w_{DE} \simeq -1, \, \rho \simeq \rho_{\Lambda}, R \sim e^{H_{\Lambda}t}$ roughly 8 billion years ago until present, accelerated expansion of Universe.
- Density parameter: From Observations,

$$\Omega_i(t) \equiv \frac{\rho_i(t)}{\rho_c(t)} = \frac{8\pi G}{3H^2} \rho_i; \ \rho_c \equiv \text{critical density for flat Universe}; \ \Omega_{total} \simeq 1(k \simeq 0, \text{flat})$$

$$\Omega_{DM,0} \simeq 0.26, \ \Omega_{b,0}, 0 \simeq 0.05, \ \Omega_{r,0} \simeq 10^{-5}, \ \Omega_{DE,0} = 0.68 \ (present)$$

Another era, curvature era

- Even though (non-normalized) k is close to 0, there is error bar, so there could be a slight spatial curvature in the Universe!
- Curvature effects emerge at later time:

$$\left(\frac{\dot{R}}{R}\right)^{2} + \frac{k}{R^{2}} = \frac{8}{3}\pi G \rho = \frac{8}{3}\pi G \sum_{i=b,m,r,DE,\dots} \rho_{i,0} \left(\frac{R_{0}}{R}\right)^{3(1+w)},$$

For $w > -\frac{1}{3}$, at large R, curvature term dominates.

Non DE effects will fade away as Universe evolves.
 So curvature could dominate (or important)
 between matter-era and DE-era → One possible proposal for Hubble tension solution.

Friedmann eqn. in density parameters

Generalized form of Friedmann:

$$H^{2} = H_{0}^{2} \left(\sum_{i=\dots} \Omega_{i,0} R^{-3(1+w_{i})} + (1-\Omega_{0}) R^{-2} \right) = H_{0}^{2} \left(\sum_{i=\dots,k} \Omega_{i,0} R^{-3(1+w_{i})} \right)$$
where $\Omega_{k,0} \equiv 1 - \Omega_{0} = -\frac{k}{H_{0}^{2}}, w_{k} = -\frac{1}{3}$

 Quite interesting that curvature lies at boundary between DE and non DE, not accelerate nor decelerate the expansion of the Universe.

Universe as a horn!

Stretched horn!

Credit:https://cmb.winthe rscoming.no/pdfs/bauma nn.pdf

Event	time t	redshift z	temperature T
Inflation	10 ⁻³⁴ s (?)	-	_
Baryogenesis	?	?	?
EW phase transition	20 ps	10^{15}	$100~{\rm GeV}$
QCD phase transition	$20~\mu \mathrm{s}$	10^{12}	$150~{\rm MeV}$
Dark matter freeze-out	?	?	?
Neutrino decoupling	1 s	6×10^{9}	1 MeV
Electron-positron annihilation	6 s	2×10^{9}	$500~{ m keV}$
Big Bang nucleosynthesis	3 min	4×10^8	$100~{\rm keV}$
Matter-radiation equality	$60~{ m kyr}$	3400	$0.75~\mathrm{eV}$
Recombination	$260380~\mathrm{kyr}$	1100-1400	0.26–0.33 eV
Photon decoupling	$380~{ m kyr}$	1000-1200	0.23–0.28 eV
Reionization	100–400 Myr	11-30	$2.67.0~\mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	$0.33~\mathrm{meV}$
Present	13.8 Gyr	0	$0.24~\mathrm{meV}$

Distances in cosmology

1. <u>Parallax</u>: astrophysically short distances determined by parallax.

$$\frac{\theta}{2} \approx \frac{d_E}{d}$$
, $d_E = 1 \text{ A.U.} = 1.496 \times 10^8 \text{ km}$,

1 parsec $\equiv d$ when $\frac{\theta}{2} = 1$ arcseconds = 1/3600 degrees, 1 pc = 3.2616 lyrs

• Hipparcos satellite (ESA): $\theta \approx 7 - 9 \times 10^{-4}$ arcseconds, $d \ge 100$ pc possible!

Distances in cosmology

apparent luminosity
$$\ell = \frac{L}{4\pi d^2}$$
, $L =$ absolute luminosity,

apparent magnitude
$$m - m_0 = -2.5 \log_{10} \left(\frac{\ell}{\ell_0} \right)$$
,

$$m-M = 5(\log_{10} d - 1)$$
; d in parsec,
absolute magnitude M defined at 10 pc.

- For z > 0.1, cosmological expansion non-negligible, how to determine distances at large z??
- 1. At time t_0 that light reaches Earth, proper area seen by source is

$$4\pi r_1^2 R^2(t_0)$$
, $r_1 = \text{coord. distance between Earth&source}$

Distances in cosmology

2. Arrival rate of photons is lower than emitted rate by

$$\frac{R(t)}{R(t_0)} = \frac{1}{1+z}$$

3.
$$E_{\text{received }\gamma} = E_{\text{emitted }\gamma} \frac{R(t)}{R(t_0)} = E_{\text{emitted }\gamma} \left(\frac{1}{1+z}\right)$$

Therefore,
$$\ell = \frac{L}{4\pi r_1^2 R_0^2 (1+z)^2} \equiv \frac{L}{4\pi d_L^2}$$
,

 $d_L = r_1 R_0 (1+z)$, luminosity distance

For light travels radially since

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega \right), k = 1, 0, -1$$

$$\int_{0}^{r_{1}} \frac{dr}{\sqrt{1-kr^{2}}} = \int_{0}^{t} \frac{dt}{R(t)} = \int_{R_{0}}^{R} \frac{dR}{R\dot{R}} = \int_{z}^{0} \frac{1}{H(z)R_{0}} dz,$$

$$(Arcsin(r_1), r_1, Arcsinh(r_1)) = \int_{z}^{0} \frac{1}{H(z)R_0} dz$$
, for $k = 1, 0, -1$

Luminosity distance

$$\left(d_L = R_0 (1+z) \left[\sin \left(\int_z^0 \frac{dz}{H(z)R_0} \right), \left(\int_z^0 \frac{dz}{H(z)R_0} \right), \sinh \left(\int_z^0 \frac{dz}{H(z)R_0} \right) \right], k = [1, 0, -1] \right)$$

Pantheon, 1048 SNIa data, doi:10.3847/1538 -4357/ac8b7a

Universe is accelerating with DE for z<2.3

- Late time DE dominating era: recall $\frac{R}{R_0} = \frac{1}{1+z}$ so Universe was started to be DE dominated when its roughly half the size of present!
- DE \rightarrow k \rightarrow matter \rightarrow radiation \rightarrow Inflation(?)

$$\rho \sim R^{>-2} \Rightarrow R^{-2} \Rightarrow R^{-3} \Rightarrow R^{-4} \Rightarrow \rho_{\Lambda}(???)$$

Lets study Thermal History since Radiation era.

Thermal History

Natural units: space = time, E = m = 1/space

$$c = 1 \Rightarrow 2.998 \times 10^{8} \text{ meter} = 1 \text{ second, } 1 \text{ kg} = 1 \text{ Joule} = \frac{\text{GeV}}{1.602 \times 10^{-10}},$$

$$\hbar = 1 \Rightarrow \frac{6.626 \times 10^{-34}}{2\pi} \text{ Joule} = 1 \text{ sec}^{-1} = \left(2.998 \times 10^{8} \text{ meter}\right)^{-1},$$

$$1 \text{ fm} = \frac{10^{-15}}{3 \times 10^{8}} \text{ sec} = \frac{2\pi}{6.626 \times 10^{-34} \times 3 \times 10^{23}} \text{ Joule}^{-1} = \frac{2\pi \times 1.602 \times 10^{-10}}{6.626 \times 10^{-34} \times 3 \times 10^{23}} \text{ GeV}^{-1}$$

$$= 5.067 \text{ GeV}^{-1} \Rightarrow 1 = 0.197 \text{ GeV fm}$$

Include temperature:

$$k_B = 1 \Rightarrow 1.38 \times 10^{-23} \text{ Joule} = 1 \text{ Kelvin} \Rightarrow 1 \text{ K} = 1.38 \times 10^{-23} \frac{\text{GeV}}{1.602 \times 10^{-10}},$$

$$1 \text{ K} = 8.61 \times 10^{-14} \text{ GeV}$$

Ex: find Planck mass in natural GeV unit

Thermodynamics in expanding Universe

- Early U is in radiation era with ultra-relativistic particles → massive relativistic gas → massive non-relativistic gas
 - as U expands. (radiation era -> matter era)
- Assume thermal equilibrium & interactions are taken into account by Boltzmann eqn.
- From CMB, its safe to assume thermal equilibrium at single T throughout the U.
- U Expansion $\rightarrow \left(\lambda = \lambda_0 \frac{R}{R_0} = \frac{\lambda_0}{1+z}, T = T_0(1+z)\right)$

Number density, density, pressure

$$n = \int_{0}^{\infty} dn_{q} = \int \frac{g}{(2\pi)^{3}} \frac{1}{e^{\frac{E-\mu}{T}} \pm 1} d^{3}\vec{q} = \int_{0}^{\infty} \frac{g}{2\pi^{2}} \frac{1}{e^{\frac{E-\mu}{T}} \pm 1} q^{2} dq$$

g = d.o.f. = (#spin)(#color)(#degeneracy)

$$\rho = \int_{0}^{\infty} E dn_{q} = \int \frac{g}{(2\pi)^{3}} \frac{E}{e^{\frac{E-\mu}{T}} \pm 1} d^{3}\vec{q} = \int_{0}^{\infty} \frac{g}{2\pi^{2}} \frac{E}{e^{\frac{E-\mu}{T}} \pm 1} q^{2} dq$$

$$P = \frac{1}{3} \int \frac{q^2}{E} dn_q, \quad E = \sqrt{m^2 + q^2}$$

• 1st law thermodynamics $\rightarrow s = \frac{\rho + P - \mu n}{T}$; entropy density

Ex photon gas

 $\mu_{\nu} = 0$, true for all massless particles

$$\rho_{\gamma} = \int \frac{g}{2\pi^{2}} \frac{E}{e^{\frac{E-0}{T}} - 1} q^{2} dq = \int \frac{2}{2\pi^{2}} \frac{1}{e^{\frac{q}{T}} - 1} q^{3} dq$$

$$= \frac{T^{4}}{\pi^{2}} \int_{0}^{\infty} \frac{x^{3}}{e^{x} - 1} dx = \frac{T^{4}}{\pi^{2}} \zeta(4) \Gamma(4) = \frac{\pi^{2}}{15} T^{4}; P_{\gamma} = \frac{1}{3} \rho_{\gamma}$$

$$s = \frac{4}{3} \frac{\rho_{\gamma}}{T} = \frac{4}{3} \left(\frac{\pi^2}{15}\right) T^3; n_{\gamma} = \frac{2\zeta(3)}{\pi^2} T^3 \qquad \left(\int_{0}^{\infty} \frac{x^n}{e^x + 1} dx = (1 - 2^{-n}) \Gamma(n) \zeta(n); \text{ fermion}\right)$$

 $\int_{0}^{\infty} \frac{x^{n}}{e^{x} - 1} dx = \Gamma(n+1)\zeta(n+1); \text{ boson}$

Generically for ultra-relativistic particles in thermal equilibrium;

$$\rho_{\text{rad}} = g_{\text{eff}} \frac{\pi^2}{30} T^4 = \left(\sum_{i} g_i^b + \frac{7}{8} \sum_{i} g_i^f \right) \frac{\pi^2}{30} T^4; \text{ for } T \gg m$$

For ultra-relativistic particles at each own equilibrium with $T_i \gg m_i$

$$\rho_{\text{rad}} = g_{\text{eff}} \frac{\pi^2}{30} T^4 \equiv \left(\sum_{i} g_i^b \left(\frac{T_i}{T} \right)^4 + \frac{7}{8} \sum_{j} g_j^f \left(\frac{T_j}{T} \right)^4 \right) \frac{\pi^2}{30} T^4; \text{ for } T_i \gg m_i$$

Generically relativistic particles ignoring μ_i effects;

$$n = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2}}{e^{\sqrt{p^{2}+m^{2}}/T}} dp = \frac{g}{2\pi^{2}} T^{3} \int_{0}^{\infty} \frac{y^{2}}{e^{\sqrt{y^{2}+x^{2}}}} dy \equiv \frac{g}{2\pi^{2}} T^{3} I_{\pm}(x);$$

$$\rho = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} \sqrt{p^{2}+m^{2}}}{e^{\sqrt{p^{2}+m^{2}}/T}} dp = \frac{g}{2\pi^{2}} T^{4} \int_{0}^{\infty} \frac{y^{2} \sqrt{y^{2}+x^{2}}}{e^{\sqrt{y^{2}+x^{2}}}} dy \equiv \frac{g}{2\pi^{2}} T^{4} J_{\pm}(x)$$

$$x \equiv \frac{m}{T}, y \equiv \frac{p}{T}$$

$$x \equiv \frac{1}{T}, y \equiv \frac{1}{T}$$
Ex: compute

 $n_{v,0}, \rho_{v,0}, \Omega_{v,0}h^2$ for $H_0 = 100h$ km/s/Mpc

• Non-relativistic particles(gas&dust) $T_i \ll m_i$

$$n \simeq g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}; T \ll m$$
 $\rho \simeq nm, P = nT \implies \text{ideal gas law!}$

Ex: Show this.

 For neutrinos, there are left-handed 3 flavours & right-handed sterile ??? flavours;

$$\rho_{\nu_L} = \frac{7}{8} \frac{\pi^2}{30} T_{\nu}^4, \rho_{\nu_R} = \frac{7}{8} \frac{\pi^2}{30} T_{\nu_R}^4 \text{ per flavour}$$

 Has to multiply by 2 to account for particle&antiparticle, neutrinos will decouple the latest due to small masses.

Standard Model particles

- +Higgs, m=125 GeV
- Possible to have
 sterile neutrinos which
 does not interact with
 anything except via
 gravity! → warm DM
- Warm DM is harder to reconcile with structure formation.

Evolution of relativistic d.o.f.

$$T \ge 100 \text{ GeV}(\simeq 1.2 \times 10^{15} \text{ K}),$$

$$\exists 6 q, \overline{q}, e^{\pm}, \mu^{\pm}, \tau^{\pm}, \nu_L^{e,\mu,\tau}, \overline{\nu}_L^{e,\mu,\tau}, W^{\pm}, Z, \gamma, g, H_0;$$

$$g_{\text{eff}} = \frac{7}{8} ((2 \times 12 \times 3) + (2 \times 6) + (2 \times 3)) + ((3 \times 3) + (2) + (2 \times 8) + 1) = 106.75$$

 (q,\overline{q}) (charged leptons) $(\nu,\overline{\nu})$; (W^{\pm},Z) γ g H_0

$$T \approx 30 \text{ GeV}; \ t\overline{t} \to \gamma\gamma, -(t, \overline{t}); g_{\text{eff}} = 106.75 - \frac{7}{8}(2 \times 6) = 96.25$$

$$T \approx 10 \text{ GeV}; -(W, Z, H_0); g_{\text{eff}} = 96.25 - ((3 \times 3) + 1) = 86.25$$

$$T < 10 \text{ GeV}; -(b, \overline{b}); g_{\text{eff}} = 86.25 - \frac{7}{8}(2 \times 6) = 75.75$$

$$T > 0.150 \text{ GeV}; -(c, \overline{c}, \tau, \overline{\tau}); g_{\text{eff}} = 75.75 - \frac{7}{8}(12 + 4) = 61.75$$

Evolution of relativistic d.o.f.

$T \le 0.150 \text{ GeV}$; confinement;

 $\exists n^0, p^+ \text{(non-rela \Rightarrow small#)}, q \overline{q} = \pi^{\pm,0} \text{(relativistic)}, \gamma, \nu, \mu, e;$

$$g_{\text{eff}} = (2+3) + \frac{7}{8}(6+4+4) = 17.25$$

$$T > 1 \text{ MeV}; -(\mu, \pi); g_{\text{eff}} = 17.25 - \frac{7}{8}(4) - 3 = 10.75$$

Figure 3.4: Evolution of relativistic degrees of freedom $g_{\star}(T)$ assuming the Standard Model particle content. The dotted line stands for the number of effective degrees of freedom in entropy $g_{\star S}(T)$.

T [MeV]

Next is $e^+e^- \rightarrow \gamma\gamma$ but neutrino will decouple before.

Entropy conservation in expanding U

- Locally Energy changes in expanding U, but entropy is conserved in thermal equilibrium!
- Non-equilibrium processes produce Entropy.
- S = S(photons) + S(baryons) + S(DM) + S(BH)
 S(photons) dominates in radiation era.

$$\frac{dS}{dt} = \frac{d}{dt} \left(\frac{\rho + P}{T} V \right) = 0 \text{ for } \frac{\partial P}{\partial T} = \frac{\rho + P}{T},$$

$$s = \frac{\rho + P}{T} = \sum_{i} \frac{\rho_{i} + P_{i}}{T_{i}} \equiv \frac{2\pi^{2}}{45} g_{S}^{\text{eff}} T^{3} = \frac{\text{Const.}}{V} \sim R^{-3}$$

Relativistic d.o.f. of Entropy

$$g_S^{\text{eff}} T^3 R^3 = \text{Const.} \Rightarrow T \sim \left(g_S^{\text{eff}}\right)^{-1/3} \frac{1}{R}$$

$$g_S^{\text{eff}} = \sum_b g_b \left(\frac{T_b}{T}\right)^3 + \frac{7}{8} \sum_f g_f \left(\frac{T_f}{T}\right)^3$$

Using Friedmann eqn, radiation era;

$$\frac{\dot{R}}{R} = \frac{1}{2t} = \sqrt{\frac{8\pi G}{3}} \rho(t) = T^2 \sqrt{\frac{8\pi G}{3} \frac{\pi^2}{30} g_{\text{eff}}} = \frac{\pi}{3} \sqrt{\frac{g_{\text{eff}}}{10}} \frac{T^2}{M_{Pl}^*},$$

$$M_{Pl}^* \equiv \sqrt{\frac{\hbar c}{8\pi G}} = 2.4 \times 10^{18} \text{ GeV}$$
; reduced Planck mass

Ex: Show that
$$\frac{T}{1 \text{ MeV}} \approx 1.5 (g_{\text{eff}})^{-1/4} \left(\frac{1 \text{ sec}}{t}\right)^{1/2},$$

$$t \approx 1 \text{ sec} \implies \text{U has } T \approx 1 \text{ MeV}$$

Neutrino decoupling

 Neutrinos are kept in thermal equilibrium by weak interaction, i.e.,

$$V_e + \overline{V}_e \longleftrightarrow e^- + e^+, e^- + \overline{V}_e \longleftrightarrow e^- + \overline{V}_e$$

Competing between scattering and U expansion;

$$t_H = \frac{1}{H}, t_{\text{scattering}} = \frac{1}{\Gamma}, \Gamma = n\overline{v}\sigma = \text{ scattering rate}$$

- Decoupling when scattering time is longer than expansion time, $t_{\rm scattering} \geq t_H$
- For neutrino with weak interaction,

$$\frac{t_H}{t_{\text{scattering}}} = \frac{\Gamma_{\text{weak}}}{H} \approx \left(\frac{T}{\text{MeV}}\right)^3; \ \nu_e, \overline{\nu}_e \text{ decouple around } T \sim \text{MeV}$$

Neutrinos separate from Standard model particles
 neutrino decoupling.

Two thermal equilibria at T_{ν}, T_{ν}

Same temperature even after decoupling until $e^+e^- o \gamma\gamma$ at $T \approx m_e c^2 (0.511 \text{ MeV})$

$$T_{\nu} \sim g_{\text{eff}}^{S} \text{ (at } T > m_{e}c^{2})R^{-1},$$

$$T_{\gamma} \sim g_{\text{eff}}^{S} (\text{at } T < m_{e}c^{2})R^{-1}$$

For non-neutrinos; $g_{\text{eff}}^{S}(T > m_e c^2) = 2 + \frac{7}{9}(2 \times 2) = \frac{11}{2}$,

$$g_{\rm eff}^{S}(T < m_e c^2) = 2$$

• So after
$$e^+e^-$$
 annihilation; $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \longrightarrow T_{\nu,0} = 1.95 \text{ K}$

• Then,
$$g_{\text{eff}} = 2 + \frac{7}{8} (2 \times N_{\text{eff}}) \left(\frac{4}{11}\right)^{4/3} = 3.36,$$
 $g_{\text{eff}}^S = 2 + \frac{7}{8} (2 \times N_{\text{eff}}) \left(\frac{4}{11}\right) = 3.94$

$$n_{\nu} = \frac{3}{4} N_{\text{eff}} \left(\frac{4}{11} \right) n_{\gamma}$$

Boltzmann equation

$$\frac{1}{R^3}\frac{d}{dt}(n_1R^3) = -\alpha n_1 n_2 + \beta n_3 n_4; \ \alpha = \langle \sigma v \rangle$$

 σ = scattering cross section 1+2 \rightarrow 3+4

At equilibrium,
$$\frac{d}{dt}(n_1R^3) = 0 \rightarrow \beta = \left(\frac{n_1n_2}{n_3n_4}\right)_{eq} \alpha$$

$$\left[\frac{1}{R^3}\frac{d}{dt}(n_1R^3) = -\langle \sigma v \rangle \left(n_1n_2 - \left(\frac{n_1n_2}{n_3n_4}\right)_{\text{eq}} n_3n_4\right)\right]$$

Another useful form; $N_i \equiv \frac{n_i}{s}$, $\Gamma_1 = n_2 \langle \sigma v \rangle$,

$$\frac{d \ln N_1}{d \ln R} = -\frac{\Gamma_1}{H} \left(1 - \left(\frac{N_1 N_2}{N_3 N_4} \right)_{\text{eq}} \frac{N_3 N_4}{N_1 N_2} \right)$$

Riccati equation

- If DM is WIMP(Weakly Interacting Massive Particle) and assuming $X + \overline{X} \rightarrow \ell + \overline{\ell}$
- Then $\frac{dN_X}{dt} = -s\langle \sigma v \rangle \left(N_X^2 (N_X^{\text{eq}})^2 \right) \Rightarrow \frac{dN_X}{dx} = -\frac{\lambda}{x^2} \left(N_X^2 (N_X^{\text{eq}})^2 \right)$

for
$$x = \frac{M_X}{T}$$
, $\lambda = \frac{\langle \sigma v \rangle M_X^3}{H(M_X)} \frac{2\pi^2}{45} g_S^{\text{eff}}$

Freeze out

• For $x \ll 1$; $N_X^{\text{eq}} = N_X^{\text{eq}}(x) \approx N_X \approx 1$ $x \gg 1$; $N_X^{\text{eq}} \approx e^{-x}$

$$N_X^{\infty} \simeq \frac{x_f}{\lambda}, x_f \simeq 10$$

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf

Figure 3.7: Abundance of dark matter particles as the temperature drops below the mass.

WIMP miracle(???)

 From Supernovae fitting and direct counting of visible matter&estimation we estimate matter density 30% of critical density with only 5% baryonic matter; So

$$\Omega_{\rm DM,0} \simeq 0.25 \Longrightarrow \Omega_{\rm DM,0} h^2 = 0.11$$

 This could actually relate to WIMP with Weak interaction frozen out during radiation era!

$$\Omega_{X,0} = \frac{\rho_{X,0}}{\rho_{c,0}} = \frac{M_X N_X^{\circ} s_0}{3M_{Pl}^{*2} H_0^2}, \ \rho_{c,0} = \frac{3H_0^2}{8\pi G}, \ g_{\text{eff}}^S(T_0) = 3.91(\nu \overline{\nu}, \gamma)$$

$$\Omega_{X,0} = \frac{M_X x_f s(T_0) H(M_X)}{3M_{Pl}^{*2} H_0^2 \frac{2\pi^2}{45} g_{\text{eff}}^S M_X^3 \langle \sigma v \rangle}, \ H(M_X) \simeq \frac{\pi}{3} \left(\frac{g_{\text{eff}}(M_X)}{10} \right)^{1/2} \frac{T_X^2}{M_{Pl}^*}$$

$$\Omega_{X,0}h^2 = \frac{x_f}{\sqrt{10g_{\rm eff}(M_X)}} \frac{\pi g_{\rm eff}^S(T_0)}{9\langle\sigma v\rangle} \Big(2.2\times10^{-10}{\rm GeV}^{-2}\Big) \Rightarrow \langle\sigma v\rangle \approx 10^{-8}{\rm GeV}^{-2}$$
 Weak scattering!

BUT

- So far at LHC, elsewhere there is no direct evidence of WIMP with weak scattering...
- WTH is DM then??? > Please Google or ask Gemini, ChatGPT.
- WTH is DE????
- Next, lets consider Recombination where H-atom was formed(coming before Dark Age, First Stars and Reionization).

Credit:https://cmb. wintherscoming.no /pdfs/baumann.pdf

Event	time t	redshift z	temperature T
Inflation	10 ⁻³⁴ s (?)	_	_
Baryogenesis	?	?	?
EW phase transition	20 ps	10^{15}	$100 \; \mathrm{GeV}$
QCD phase transition	$20~\mu \mathrm{s}$	10^{12}	$150~{\rm MeV}$
Dark matter freeze-out	?	?	?
Neutrino decoupling	1 s	6×10^{9}	1 MeV
Electron-positron annihilation	6 s	2×10^{9}	$500~\mathrm{keV}$
Big Bang nucleosynthesis	3 min	4×10^8	$100~{\rm keV}$
Matter-radiation equality	60 kyr	3400	$0.75~\mathrm{eV}$
Recombination	260–380 kyr	1100-1400	0.26–0.33 eV
Photon decoupling	380 kyr	1000-1200	$0.23 – 0.28 \ \mathrm{eV}$
Reionization	100–400 Myr	11–30	$2.67.0~\mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	$0.33~\mathrm{meV}$
Present	13.8 Gyr	0	0.24 meV

Recombination

H atom is formed and remains when temperature drops below ionization energy of H

energy of H atom 13.6 eV.
$$\frac{dX_e}{dx} = -\frac{\lambda}{r^2} \left[X_e^2 - (X_e^{eq})^2 \right]$$

$$x \equiv B_{\rm H}/T$$

$$\lambda \equiv \left[\frac{n_b \langle \sigma v \rangle}{xH}\right]_{x=1} = 3.9 \times 10^3 \left(\frac{\Omega_b h}{0.03}\right)$$

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann notes.pdf

 $X_e = \frac{n_e}{n_e}$, $\eta = \text{baryon-to-photon ratio}$

Saha Eqn.
$$\left| \left(\frac{1 - X_e}{X_e^2} \right)_{\text{eq}} = \frac{2\zeta(3)}{\pi^2} \, \eta \left(\frac{2\pi T}{m_e} \right)^{3/2} e^{B_{\text{H}}/T} \right|.$$

Figure 3.8: Free electron fraction as a function of redshift.

Recombination & Photon decoupling

Some details:

$$X_e \simeq 0.1 \Rightarrow T_{\text{rec}} \simeq 0.3 \text{ eV} \simeq 3600 \text{ K}, z_{\text{rec}} \simeq 1320$$

• Photon decoupling $e^- + \gamma \leftrightarrow e^- + \gamma$,

 $\sigma_T \approx 2 \times 10^{-3} \, \mathrm{MeV^{-2}}$ is the Thomson cross section

$$\Gamma_{\gamma} \approx n_e \sigma_T$$
,

• Reaction ceases when $\Gamma_{\gamma}(T_{dec}) \sim H(T_{dec})$

$$\Gamma_{\gamma}(T_{dec}) = n_b X_e(T_{dec}) \, \sigma_T = \frac{2\zeta(3)}{\pi^2} \, \eta_b \, \sigma_T \, X_e(T_{dec}) T_{dec}^3 \,,$$

$$H(T_{dec}) = H_0 \sqrt{\Omega_m} \left(\frac{T_{dec}}{T_0}\right)^{3/2} \,.$$

Leads to

$$X_{\text{dec}} \simeq 0.01 \Longrightarrow T_{\text{dec}} \simeq 0.27 \text{ eV}, z_{\text{rec}} \simeq 1100, t_{\text{CMB}} \simeq 380,000 \text{ yrs}$$

BB Nucleosynthesis

• Successful in reproducing
$$\left(\frac{n_{\rm n}}{n_p} \simeq \frac{2}{14} \Rightarrow \frac{n_{\rm He}}{n_{\rm H}} \simeq \frac{1}{12} \Rightarrow \frac{m_{\rm He}}{m_H} \simeq \frac{1}{3}\right)$$

- Or He 25%, H 75% by mass, see details elsewhere(e.g. Baumann notes).
- Next, we go back further in order to explain the flatness we see&saw, the validity of cosmological principle in CMB and large-scale homogeneity of matter distribution.
- Inflation is a simple good idea as a quantitative explanation.

Inflation

• Flatness problem: why density parameter is so close to 1??? $\Omega(z)-1=\frac{\Omega_0-1}{1-\Omega_0+\Omega_{\Lambda,0}R^2+\Omega_{m,0}R^{-1}+\Omega_{r,0}R^{-2}}$

$$\Omega(z) - 1 \rightarrow 0$$
 as $R \rightarrow 0$

- (Use $R^2H^2(1-\Omega) = H_0^2(1-\Omega_0)$ to prove)
- Who tune this at the beginning? → fine tuning problem in cosmology
- Also Horizon problem: how CMB equilibrates to 1/100,000 uniformity throughout the entire sky???

Horizons

- Particle horizon = furthest distance we can observe from the PAST.
- Event horizon = furthest distance we can observe in the FUTURE.

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega \right) \equiv R^{2}(\eta)(d\eta^{2} - d\chi^{2})$$

for null path
$$d\Omega = 0$$
 in the last step. $\chi = \int \frac{dr}{\sqrt{1 - kr^2}}$

 Conformal time 7 makes things flat and easy to visualize.

$$\chi_{ph} = \eta - \eta_i = \int_{t_i}^t \frac{dt}{R(t)}, \chi_{eh} = \eta_f - \eta = \int_t^{t_f} \frac{dt}{R(t)}$$

Horizon problem in conformal diagram

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf

- Past light cones at separate regions cannot be in causal contact, how can they be the same within 1/100,000?
- Introduce concept of Hubble sphere or Hubble radius.

 $(RH)^{-1}$: comoving Hubble radius

$$\chi_{ph} = \int_{t_i}^{t} \frac{dt}{R(t)} = \int_{\ln R_i}^{\ln R} (RH)^{-1} d\ln R = \eta - \eta_i,$$

For
$$P = w\rho c^2$$
, $R(t) = \left(\frac{3}{2}H_0(1+w)t\right)^{\frac{2}{3(1+w)}}$, $\chi_{ph} = \left(\frac{2}{1+3w}\right)\frac{1}{H_0}\left(R^{\frac{1+3w}{2}} - R_i^{\frac{1+3w}{2}}\right)$

For
$$3w+1>0$$
, $\eta_i = \left(\frac{2}{1+3w}\right) \frac{1}{H_0} \left(R_i^{\frac{1+3w}{2}}\right) \to 0 \text{ as } R_i \to 0$, $\chi_{ph} = \frac{2}{1+3w} (RH)^{-1}$

$$\chi_{ph} = \frac{2}{1+3w} (RH)^{-1}$$
 for $w = 1/3$ (radiation)

- Hubble radius determines particle horizon.
- Hubble radius can shrink if DE.

$$(RH)^{-1} = H_0^{-1} R^{\frac{1+3w}{2}}$$
, shrinks if $1+3w < 0$

BUT
$$\eta_i = \left(\frac{2}{1+3w}\right) \frac{1}{H_0} \left(R_i^{\frac{1+3w}{2}}\right) \to -\infty \text{ as } R_i \to 0 \implies \chi_{ph} \to \infty!!!$$

Supernice that particle horizon can be any large!!!

 Extending conformal time to -∞ allows anywhere to be in causal contact in the far past, and the past is infinite to spare with!!!

Credit:https://cmb.wintherscoming.no/pdfs/baumann.pdf

Even before the time of DE in 1998, "DE" was used in Inflation.

https://cmb.wintherscoming.no/pdfs/baumann.pdf

 If we assume GUT as the symmetric point where inflation Ended and Beginning of HOT Big Bang.

To solve horizon problem;

$$\left| (R_I H_I)^{-1} > (R_0 H_0)^{-1} \sim \frac{R_E}{R_0} \left(\frac{H_E}{H_0} \right) (R_E H_E)^{-1} \sim \frac{R_E}{R_0} \left(\frac{R_0}{R_E} \right)^2 (R_E H_E)^{-1}$$

since radiation era $H \sim R^{-2}$, $(R_I H_I)^{-1} > \frac{T_E}{T_0} (R_E H_E)^{-1} = 10^{28} (R_E H_E)^{-1}$

if we set $T_E \sim 10^{15} \text{GeV}$, $T_0 \sim 10^{-4} \text{eV}$ and $H_I \simeq H_E \Rightarrow \frac{R_E}{R_I} > 10^{28}$, e-folding = $28 \ln 10 \sim 64$

 Hubble sphere
 should shrink
 10^28 during
 Inflation until
 GUT scale era Shrinking Hubble sphere ← → accelerated expansion

$$\frac{d}{dt}(RH)^{-1} = -\left(\frac{\ddot{R}}{\dot{R}^2}\right) < 0 \Leftrightarrow \ddot{R} > 0$$

$$\varepsilon = -\frac{d\ln H}{dN} = -\frac{d\ln H}{d\ln R} = -\frac{\dot{H}}{H^2} = 1 - \frac{\ddot{R}}{\dot{R}^2} < 1 \Leftrightarrow \ddot{R} > 0,$$

$$N = \text{number of } e\text{-folding}$$

But also has to last long enough. Parametrised by

$$\eta \equiv \frac{d \ln \varepsilon}{dN} = \frac{d \ln \varepsilon}{d \ln R} = \frac{\dot{\varepsilon}}{\varepsilon H} \Rightarrow |\eta| < 1 \text{ so that } \varepsilon < 1 \text{ persists.}$$

• Lets consider inflation toy model using single scalar field called *inflaton*.

Inflaton toy model

$$Lagrangian = \frac{1}{2} \partial_{a} \phi \partial^{a} \phi - V(\phi), \ T_{ab} = \partial_{a} \phi \partial_{b} \phi - g_{ab} \left(\frac{g^{cd}}{2} \partial_{c} \phi \partial_{d} \phi - V(\phi) \right)$$

$$\rho_{\phi} = T_{t}^{t} = \frac{\dot{\phi}^{2}}{2} + V(\phi), \ T_{j}^{i} = -P_{\phi}\delta_{j}^{i} = -\delta_{j}^{i} \left(\frac{\dot{\phi}^{2}}{2} - V(\phi)\right)$$

$$\frac{P_{\phi}}{\rho_{\phi}} = \frac{\frac{\dot{\phi}^2}{2} - V(\phi)}{\frac{\dot{\phi}^2}{2} + V(\phi)} < -\frac{1}{3} \Leftrightarrow V > \dot{\phi}^2 : \text{potential dominates}$$

https://cmb.wintherscomin Friedmann eqn & conservation eqn lead to: g.no/pdfs/baumann.pdf

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
, Klein-Gordon eqn. in FLRW metric

Roll to oscillate at bottom → Reheating

For
$$V \gg \dot{\phi}^2$$
, $\varepsilon \simeq \frac{M_{Pl}^{*2}}{2} \left(\frac{V'}{V}\right)^2 \equiv \varepsilon_V$, $\eta_V \equiv \frac{V''}{V} M_{Pl}^{*2}$; ε_V , $|\eta_V| \ll 1$ (slow roll)

 Homogeneity&isotropy of CMB requires at least 60 e-foldings until GUT scale 10^15 GeV era if we assume GUT as Beginning of HOT BB.

$$\begin{split} N_{tot} &= \int\limits_{R_I}^{R_E} d \ln R = \int\limits_{t_I}^{t_E} H(t) dt; \ \varepsilon(t_I) = \varepsilon(t_E) = 1 \\ N_{tot} &= \int\limits_{\phi_I}^{\phi_E} \frac{H}{\dot{\phi}} d\phi = \int\limits_{\phi_I}^{\phi_E} \frac{1}{M_{Pl}^* \sqrt{2\varepsilon}} d\phi \approx \int\limits_{\phi_I}^{\phi_E} \frac{1}{M_{Pl}^* \sqrt{2\varepsilon_V}} d\phi \\ N_{CMB} &= \int\limits_{\phi_{CMB}}^{\phi_E} \frac{1}{M_{Pl}^* \sqrt{2\varepsilon_V}} d\phi \approx 60 \ \Rightarrow N_{tot} > N_{CMB} \ \text{required} \end{split}$$

- Depending on model → constraint on inflation value at start of inflation, usually superPlanckian inflaton due to required efolding# >60.
- After end of inflation, need to transfer inflaton Energy to "Big Bang" particles, i.e., particles we see today.
 - → This is "HOT Big Bang".

Reheating

 Energy of inflaton potential needs to transfer to Standard Model particles.

$$V(\phi) \approx \frac{m^2}{2} \phi^2$$
 around minimum, $\ddot{\phi} + 3H\dot{\phi} = -m^2\phi$,

Soon $H \ll m$, ϕ becomes normal oscillatory field with $\langle \phi \rangle, \langle \dot{\phi} \rangle = 0$,

Conservation eqn.
$$\dot{\rho}_{\phi} = -3H(\rho_{\phi} + \frac{\dot{\phi}^2}{2} - \frac{m^2}{2}\phi^2) \approx -3H\rho_{\phi}$$
 on average in time. $\rho_{\phi} \sim R^{-3}$

Inflaton decay via coupling with SM matter:

$$\dot{\rho}_{\phi} + 3H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}; \ \Gamma_{\phi} = \text{inflaton decay rate}$$

SM particles thermalized at $T_{\text{reheating}} \Rightarrow \text{radiation era}$

Problems

- Baryogenesis, why there is much more particles than antiparticles??? CP violation in SM is too small to account for this.
- GUT(Grand Unified Theory) valid? SUSY GUT?
 String? Cyclic Universe??? WHAT???
- Inflation predicts almost scale-invariant power spectrum which can be tested with Observations.
- See Cosmological Perturbations.