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Problems with Newtonian Cosmology  

• Gravity attracts, mass should clump, universe should 
be dynamical  infinite universe as solution, i.e. no 
center to collapse to! 

• Olber paradox  infinite universe forever exists has 
infinite radiation flux at any point!! 
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Space is dark  Finite Universe with finite age! 

• Infinite Universe existing ever forever must be 
utterly dark(run out of fuel), full of black 
holes. 

• Finite Universe existing ever forever must have 
collapsed completely into single gigantic black 
hole. 

• Alternatives emerge in General Relativity(GR); 

    Closed, Flat, Open dynamical Universe 



Hubble discoveries 

• Using Cepheids’ Period-Luminosity relation 
discovered by Henrietta Leavitt, establish that spiral 
“nebulae” are spiral galaxies! Hence Universe size is 
hundreds thousand times larger than believed at that 
time. 

• (1929) Found linear relation between 
redshift&distance of far away galaxies,  
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• This is called Hubble law, will derive later from 
FLRW metric. 



GR  spacetime lump = Universe 

• Gravity = Spacetime curvature =      energy&momentum density. 

• Matter tells spacetime how to curve, 

      Spacetime tells matter how to move. 
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Where Ricci tensor                    and the Riemann curvature 
tensor is given by       
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The energy-momentum tensor          contains info of matter 
And energy distribution. 
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Two more curvatures 
• Ricci tensor: 

 
• Ricci scalar:   

 

• Ex: sphere      , 

 

  (Use Mathematica to) compute   
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• Hyperbolic       ,  2H
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Cosmological 
principle(Newton&Einstein) 

• Homogeneous universe: uniform and is the 
same everywhere 

• Isotropic universe: is the same in every 
direction 

• Homogeneity implies no special point in 
universe. Combined with Isotropy implies that 
there can’t be special direction(anisotropy) 
and special observer in the universe. 



FLRW metric ansatz 

• Friedmann was the first (1922), most generic metric obeying 
cosmological principle 

 

 

• From homogeneity, we demand that  
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3D shape of Universe 

• (Use Mathematica to) compute 

 

 

 

• We can solve to obtain 

• By redefining 

 

 

• Hubble law is natural. 
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Solve Einstein eqn. from this metric 
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• Assume perfect fluid: 
• Will use Mathematica to compute later. 

 
• Note the relation in FLRW metric: 
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Einstein field eqn. of FLRW metric 
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Friedmann equation 

Acceleration equation 

• Another redundant eqn. from  
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Linear equation of state 

• To solve for 3 unknown                      , we still need what-so-
called Equation of State (EoS), i.e., additional info about 

•  For compact object, it could be polytrope               , or even 

                                                    

• But for cosmology, it suffices(?) to assume linear EoS ; 

 

• Sub into conservation eqn. to obtain 

 

• Sub into Friedmann eqn. to obtain   

,P 
, , ( )P R t

nP 

( , ), ( , )P P T T    

P w

3(1 )

0

0

w
R

R







 
  
 

2
3(1 )( ) ~   for 1,

( ) ~   for 1

w

Ht

R t t w

R t e w

  

 



3 main eras of Universe 

• radiation-dominated:  

     

     extremely hot so that most particles can treated  

    relativistically.  

• matter-dominated:  

     

     cold enough to treat as non-relativistic particle       

     simplified to “dust”. 

• Dark energy dominated:  

     roughly 8 billion years ago until present, accelerated  

     expansion of Universe. 

• Density parameter:  From Observations, 
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Another era, curvature era 
• Even though (non-normalized) k is close to 0, 

there is error bar, so there could be a slight 
spatial curvature in the Universe! 

• Curvature effects emerge at later time:  
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• Non DE effects will fade away as Universe evolves. 
So curvature could dominate (or important) 
between matter-era and DE-era  One possible 
proposal for Hubble tension solution. 



Friedmann eqn. in density parameters 
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• Generalized form of Friedmann: 

• Quite interesting that curvature lies at boundary  
      between DE and non DE, not accelerate nor decelerate 
      the expansion of the Universe. 



Universe as a horn! 



Stretched horn! 



Credit:https://cmb.winthe
rscoming.no/pdfs/bauma
nn.pdf 



Distances in cosmology 
1. Parallax:  astrophysically short distances determined  
by parallax. 

8,  1 A.U. = 1.496 10  km,
2

1 parsec   when 1 arcseconds = 1/3600 degrees,
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• Hipparcos satellite (ESA):  
47 9 10  arcseconds,

100 pc possible!d

   





Distances in cosmology 
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• For z > 0.1, cosmological expansion non-negligible, how to  
      determine distances at large z ?? 
1. At time     that light reaches Earth, proper area seen by source is 
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Distances in cosmology 

• For light travels radially since 
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2. Arrival rate of photons is lower than emitted rate by  
0
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Luminosity distance 
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Pantheon, 1048 
SNIa data, 
doi:10.3847/1538
-4357/ac8b7a  



Universe is accelerating with DE for z<2.3 

• Late time DE dominating era: recall 

    so Universe was started to be DE dominated 

    when its roughly half the size of present!  

• DE  k  matter  radiation  Inflation(?) 

 

 

• Lets study Thermal History since Radiation 
era. 
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Thermal History 
• Natural units: space = time, E = m = 1/space 
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• Include temperature: 

Ex: find Planck mass in natural GeV unit 



Thermodynamics in expanding Universe 

• Early U is in radiation era with ultra-relativistic 
particles  massive relativistic gas  massive 
non-relativistic gas 

    as U expands. (radiation era  matter era) 

• Assume thermal equilibrium & interactions 
are taken into account by Boltzmann eqn. 

• From CMB, its safe to assume thermal 
equilibrium at single T throughout the U. 

• U Expansion   
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Number density, density, pressure 
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• 1st law thermodynamics   ;  entropy density
P n

s
T

  




• Ex  photon gas 
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• Generically for ultra-relativistic 
      particles in thermal equilibrium; 

0,  true for all massless particles 



• For ultra-relativistic particles at each 
own equilibrium with  i iT m
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• Generically relativistic particles ignoring       effects; 
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Ex: compute 
2

,0 ,0 ,0 0, ,  for 100  km/s/Mpcn h H h    



• Non-relativistic particles(gas&dust)  
i iT m

3/2

/ ;
2

,  ideal gas law!
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Ex: Show this. 

• For neutrinos, there are left-handed 3 flavours &  
      right-handed sterile ??? flavours; 

2 2
4 47 7
,  per flavour

8 30 8 30L R R
T T   

 
  

• Has to multiply by 2 to account for particle&antiparticle, 
    neutrinos will decouple the latest due to small masses. 



Standard Model particles 

• +Higgs, m=125 GeV 
• Possible to have  
      sterile neutrinos which 
     does not interact with  
     anything except via 
     gravity!  warm DM 
• Warm DM is harder to  
     reconcile with 
     structure formation. 



Evolution of relativistic d.o.f. 
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Evolution of relativistic d.o.f. 

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf 
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Next is 
but neutrino will 
decouple before. 

e e   



Entropy conservation in expanding U 

• Locally Energy changes in expanding U, but 
entropy is conserved in thermal equilibrium! 

• Non-equilibrium processes produce Entropy. 

• S = S(photons) + S(baryons) + S(DM) + S(BH) 

    S(photons) dominates in radiation era. 
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Relativistic d.o.f. of Entropy 
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• Using Friedmann eqn, radiation era; 
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Neutrino decoupling 
• Neutrinos are kept in thermal equilibrium by weak interaction, 

i.e., 

 

• Competing between scattering and U expansion; 

 

 

• Decoupling when scattering time is longer than expansion 
time,  

• For neutrino with weak interaction, 

 

 

• Neutrinos separate from Standard model particles 

      neutrino decoupling. 
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• Same temperature even after decoupling until  
      at  
 
 
 
• For non-neutrinos;   

 
 

• So after        annihilation; 
 
 

• Then,   

          Two thermal equilibria at  ,T T 
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Boltzmann equation 
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Riccati equation 

• If DM is WIMP(Weakly Interacting Massive 
Particle) and assuming   

• Then 

 

 

• For   
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Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf 
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Freeze out 



• From Supernovae fitting and direct counting of visible 
     matter&estimation we estimate matter density 30% of  
     critical density with only 5% baryonic matter; So 

WIMP miracle(???) 

2

DM,0 DM,00.25 0.11h  

• This could actually relate to WIMP with Weak interaction 
      frozen out during radiation era! 
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    2V

Weak scattering! 



BUT 

• So far at LHC, elsewhere there is no direct evidence of 
WIMP with weak scattering… 

• WTH is DM then???Please Google or ask Gemini, 
ChatGPT. 

• Actually “gravity” might be modified  modified 
gravity, or Dark Sector of U, or axion, or sterile 
neutrino, or other exotic particles 

• WTH is DE???? 
 

• Next, lets consider Recombination where H-atom was 
formed(coming before Dark Age, First Stars and 
Reionization). 



Credit:https://cmb.
wintherscoming.no
/pdfs/baumann.pdf 



Recombination 
• H atom is 

formed and 
remains when 
temperature 
drops below 
ionization 
energy of H 
atom 13.6 eV. 

 

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf 
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Saha Eqn. 



Recombination & Photon decoupling 

• Some details:  

 

• Photon decoupling 

 

 

• Reaction ceases when 

 

 

 

• Leads to 

rec rec0.1 0.3 eV 3600 K, 1320eX T z

dec dec rec CMB0.01 0.27 eV, 1100,  380,000 yrsX T z t



BB Nucleosynthesis 

• Successful in reproducing 

 

• Or He 25%, H 75% by mass, see details 
elsewhere(e.g. Baumann notes).            

 

• Next, we go back further in order to explain the 
flatness we see&saw, the validity of cosmological 
principle in CMB and large-scale homogeneity of 
matter distribution. 

• Inflation is a simple good idea as a quantitative 
explanation. 
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Inflation 
• Flatness problem: why density parameter is so 

close to 1??? 

 

• (Use                                        to prove) 

• Who tune this at the beginning?fine tuning 
problem in cosmology 

• Also Horizon problem: how CMB equilibrates 
to 1/100,000 uniformity throughout the entire 
sky??? 
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Horizons 
• Particle horizon = furthest distance we can 

observe from the PAST. 

• Event horizon = furthest distance we can 
observe in the FUTURE. 

 

 

 

• Conformal time     makes things flat and easy 
to visualize.  
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Horizon problem in conformal diagram 

• Past light cones at separate regions cannot be in causal 
     contact, how can they be the same within 1/100,000? 
• Introduce concept of Hubble sphere or Hubble radius. 

1( ) : comoving Hubble radiusRH 

Credit:http://physics.bu.edu/~schmaltz/PY555/baumann_notes.pdf 
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for 1/ 3 (radiation)w 

• Hubble radius determines particle horizon. 
• Hubble radius can shrink if DE. 
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2

0

( ) ,  shrinks if 1 3 0

2 1
BUT  as 0 !!!

1 3

w

w
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• Supernice that particle horizon can be any large!!! 



• Extending conformal time to - allows anywhere to be in causal 
       contact in the far past, and the past is infinite to spare with!!! 

Credit:https://cmb.wintherscoming.no/pdfs/baumann.pdf 

• Even before the time of DE in 1998, “DE” was used in Inflation. 
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To solve horizon problem;

( ) ( ) ~ ( ) ~ ( )
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 28 , e-folding = 28ln10 ~ 64

• Hubble 
sphere 

should shrink 
10^28 during 
Inflation until  
GUT scale era 

https://cmb.wintherscoming.no/
pdfs/baumann.pdf 

• If we assume GUT as the  
symmetric point where inflation 
Ended and Beginning of HOT Big 
Bang. 



• Shrinking Hubble sphere  accelerated expansion 

 

 

 

 

• But also has to last long enough. Parametrised by 

 

 

• Lets consider inflation toy model using single scalar 
field called inflaton. 
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Inflaton toy model 
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• Friedmann eqn & conservation eqn lead to: 
 
 

• Roll to oscillate at bottom  Reheating 

3 '( ) 0,  Klein-Gordon eqn. in FLRW metricH V    

2*2
2 *2' ''

For , ,  ; ,  | | 1 (slow roll)
2

Pl
V V Pl V V

M V V
V M

V V
     

 
  

 

https://cmb.wintherscomin
g.no/pdfs/baumann.pdf 



• Depending on model  constraint on inflaton value at start of 
inflation, usually superPlanckian inflaton due to required e-
folding# >60. 

• After end of inflation, need to transfer inflaton Energy to “Big 
Bang” particles, i.e., particles we see today. 

         This is “HOT Big Bang”. 
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• Homogeneity&isotropy of CMB requires at least 60 e-foldings 
       until GUT scale 10^15 GeV era if we assume GUT as Beginning of   
      HOT BB. 



Reheating 
• Energy of inflaton potential needs to transfer to Standard 

Model particles. 

2
2 2

2 2
2

3

( )  around minimum, +3 ,
2

Soon ,   becomes normal oscillatory field with , 0,

Conservation eqn. 3 ( ) 3  on average in time.
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• Inflaton decay via coupling with SM matter:  

reheating

3 ;   inflaton decay rate

SM particles thermalized at  radiation era

H

T

          





Problems 

• Baryogenesis, why there is much more 
particles than antiparticles??? CP violation in 
SM is too small to account for this. 

• GUT(Grand Unified Theory) valid? SUSY GUT?  

    String? Cyclic Universe??? WHAT??? 

• Inflation predicts almost scale-invariant power 
spectrum which can be tested with 
Observations. 

• See Cosmological Perturbations. 

 

 
 


