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Perturbations in the universe

• According to cosmological principle, the universe is
homogeneous and isotropic on large scales.

• In principle, the universe cannot be perfectly
homogeneous andisotropic, because structures in the
universe such as clusters of galaxy, galaxies, etc, cannot
be created in the completely smooth universe.

• In the standard notion, structures in the universe are
developed from small inhomogeneity and anisotropy in
the early universe.

• The small inhomogeneity and anisotropy can be treated
as perturbations around the homogeneous and isotropic
universe.



The Friedmann universe

• Based on observations, the universe is spatially flat, so we
will consider only the spatially flat universe in this lecture.

• The spacetime of the homogeneous and isotropic universe
is described by FLRW metric, which for the spatially flat
universe, is given by

ds2 = gµνdx
µdxν = a2

(
−dτ 2 + δijdx

idx j
)
. (1)

where δij is the kronecker delta, a is a cosmic scale facter,
and dτ = dt/a is a conformal time while t is a time.

• In this lecture, we use the Greek indices running over 0, 1,
2, 3 to represent spacetime components, while we use the
Latin indices running over 1, 2, 3 to represent the spatial
components.



The Friedmann universe
• Matter and energy in the homogeneous and isotropic
universe can be described by a perfect fluid which the
energy-momentum tensor takes the form

Tµν =

(
ρ 0
0 gijP

)
, (2)

where ρ and P are the energy density and pressure of the
fluid.

• The component 0− 0 of the Einstein equation yields the
Friedmann equation:

H2 =
1

3m2
p

ρa2 , (3)

where H ≡ ȧ/a is the Huble parameter, a dot denotes
derivative with respect to the conformal time τ , and ρ is
the total energy density in the universe.



The Friedmann universe

• The components i − i of the Einstein equation give the
acceleration equation:

2
1

a

d2a

dt2
+

H2

a2
= − 1

m2
p

P , (4)

where P is total pressure.

• The homogeneous and isotropic universe which its
dynamics are described by the Friedmann equation and
the above equation is the Friedmann universe.

• Dynamics of ρ and P are governed by the conservation of
energy-momentum tensor:

∇νT
νµ = 0 . (5)



The Friedmann universe

• For the Friedmann universe, the conservation law yields

ρ̇ = −3H(ρ+ P) . (6)

• For the Friedmann universe, we have the Friedmann
equation, the acceleration equation, and one conservation
equation.

• Nevertheless, the acceleration equation can be obtained
by differentiating the Friedmann equation with respect to
time, and using the conservation equation to eliminate ρ̇.

• Hence, we have two independent evolution equations, but
we have three time-dependent variables, i.e., a, ρ and P



The Friedmann universe

• Dynamics of the Friedmann universe can be completely
specified if we know the relation between ρ and P , which
for the perfect fluid is given vy

P = wρ . (7)

• this relation is the equation of state and w is the
equation of state parameter.

• The equation of state parameter of radiation, matter and
cosmological constant are 1/3, 0 and -1.



Perturbation in the metric tensor

• In the subsequent topics, we will study how to quantify
perturbations in spacetime and matter in the universe by
decomposing metric and energy-momentum tensors into
background and perturbed parts.

• The reference for the subsequent topics is
[arXiv:astro-ph/0101563].



Perturbation in the metric tensor

• To descripe small deviation from the homogeneity and
isotropy of the spacetime, we decompose the metric
tensor into background part and perturbed part as

gµν = ḡµν + hµν , (8)

where ḡµν and hµν are tthe background and perturbed
metrics

• We will use an over bar to denote the homogeneous and
isotropic background quantities.

• The metric ḡµν is the FLRW metric, while |hµν | < 1.

• The components of the metric can be determined from
symmetry of the systems.



Perturbation in the metric tensor

• In the perturbed universe, there is no special symmetry to
determine the components of the perturged metric.

• Hence, we parameterize each components of the
perturbed metric as follows:

• The component 0− 0 can be espressed in term of a scalar
function ψ(τ, x⃗) as

g00 = −a2(τ) (1 + 2ψ(τ, x⃗)) . (9)



Perturbation in the metric tensor

• The components 0− i and i − 0 can be espressed in term
of a three-dimensional vector.

gi0 = g0i = a2(τ)vi(τ, x⃗) . (10)

• From vector analysis, any vector field can be decomposed
into curl- and divergence-free parts, so that

gi0 = g0i = a2(τ) (B,i(τ, x⃗)− Sj(τ, x⃗)) , (11)

where subscript ,i denotes ∂/∂x
i and Si ,i = 0.

• We see that gi0 can be expressed in terms of a scalar
function and divergence-free vector.



Perturbation in the metric tensor

• The component hij can be expressed in terms of scalar
function as

hij = a2(τ) (−2ϕ(τ, x⃗)δij + 2E,i ,j(τ, x⃗)) . (12)

• This component of the metric can also be expressed in
terms of the divergence-free vector Fi as

hij = a2(τ) (Fi ,j(τ, x⃗) + Fj ,i(τ, x⃗)) . (13)

• The last part of hij is the three-dimensional tensor which
is tressless and divergence-free :

hij = a2(τ)Hij(τ, x⃗) , where H i
i = H ij

,j = 0 . (14)



Perturbation in the metric tensor

• Hence, we have

gij = a2 [(1− 2ϕ)δij + 2E,i ,j + Fi ,j + Fj ,i + Hij ] . (15)

• The perturbed metric can be parameterized by four scalar
functions, two divergence-free vectors, and a traceless and
divergence-free tensor.

• There are four degrees of freedom from four scalar
functions, four degrees of freedom from two
divergence-free vectors, and two degrees of freedom from
tressless and divergence-free tensor, so that we have ten
degrees of freedom in total.

• These scalar, 3-D vector and 3-D tensor fields completely
characterized components of the metric tensor.



Perturbation in the metric tensor

• For linear perturbations, these scalar, vector and tensor
fields evolve independently.

• This means that the perturbation in metric tensor can be
decomposed into scalar, vector and tensor perturbations
(or modes).



Perturbation in the energy-momentum tensor
• The energy-momentum tensor of the perfect fluid can be
written in the general form as

Tµν = (ρ+ P)uµuν + gµνP , (16)

where ρ, P and uµ are the energy density, pressure, and
four-velocity of the fluid.

• The energy density and pressure are scalar quantities,
they can be decomposed into a background and a
perturbed parts as

ρ = ρ̄(τ)+ δρ(τ, x⃗) , and P = P̄(τ)+ δP(τ, x⃗) . (17)

• For the homogeneous and isotropic background, the
spatial component of the four-vector must vanish, i.e.,

uµ =
1

a
(1, 0, 0, 0) , uµ = a (−1, 0, 0, 0) , (18)



Perturbation in the energy-momentum tensor

• The temporal and spatial components of the four-velocity
can also be expressed in terms of scalar functions and
divergence-free vector V i , so that

uµ =
1

a

(
u0, v ,i + V i

)
, uµ = a (u0, v,i + Vi) , (19)

• The temperal component of uµ is estimated from

gµνu
µuν = −1 , → u0 =

1

a
(1− ψ) + higher order .

(20)

• Hence, we have

uµ =
1

a

(
1− ψ, v ,i + V i

)
, uµ = a (−1− ψ, v,i + Vi) ,

(21)



Perturbation in the energy-momentum tensor

• The energy-momentum tensor can be expressed up to the
first order perturbations as

T 0
0 = − (ρ̄+ δρ) , (22)

T 0
i =

(
ρ̄+ P̄

)
(B,i + v,i + Vi − Si) , (23)

T i
0 = −

(
ρ̄+ P̄

) (
v ,i + V i

)
, (24)

T i
j =

(
P̄ + δP

)
δij . (25)



Perturbation in the energy-momentum tensor

• For general fluid, the component i-j of energy-momentum
tensor can contain traceless and divergence-free part:

T i
j =

(
P̄ + δP

)
δij + πi

j , (26)

where πi
j describes anisotropy in the spatial part of the

energy-momentum tensor.

• The anisotropic perturbation πi
j can be decomposed into

scalar, vector and tensor parts as

πi
j = Π,i,j −

1

3
∆2Πδij +

1

2

(
πi
,j + π,ij

)
+ Πi

j , (27)

where ∆2 ≡ ∂i∂
i , πi

,i = Πi
i = Πi

j ,i = 0.



Gauge degrees of freedom

• Inserting the perturbed metric and perturbed
energy-momentum tensors into the Einstein equation, we
get two evolution equations and two constraint equations
as follows:

• Components 0− 0 and 0− i yield energy and momentum
constraint equations

3H
(
ϕ̇+Hψ

)
−∆2ϕ−H∆2σ = −

m2
p

2
a2δρ ,(28)

ϕ̇+Hψ = −
m2

p

2
a2

(
ρ̄+ P̄

)
(v + B) , (29)

where σs ≡ −B + Ė is the shear perturbation.



Gauge degrees of freedom

• Components i − i and i ̸= j yield two evolution equations

ϕ̇+ 2Hϕ̇+Hψ̇ +
(
2Ḣ +H2

)
ψ =

m2
p

2
a2δP ,(30)

σ̇s + 2Hσs − ψ + ϕ = m2
pa

2Π , (31)

• The temporal and spatial components of ∇νT
ν
µ = 0 give

the conservation equations for energy and momentum

δρ̇+ 3H(δρ+ δP) = (ρ̄+ P̄)
[
3ϕ̇−∆2(v + Ė )

]
, (32)

∂

∂τ

[
(ρ̄+ P̄)(v + B)

]
+ δp +

2

3
∆2Π

= −(ρ̄+ P̄) [ψ + 4H(v + B)] . (33)



Gauge degrees of freedom

• For scalar perturbation, the metric perturvation can be
described by four fields, ϕ,B ,E and ψ.

• The perturbation in energy-momentum tensor can also be
quantified by four fields, δρ, δP , v and Π.

• However, if we combine the evolution equations from
∇νT ν

µ = 0, and the perturbed Einstein equations, only
five equations are linearly independent.

• In general, the relation between δρ and δP is given by

δP = c2s δρ , (34)

where c2s is the sound speed square of the perturbations.



Gauge degrees of freedom

• This suggests that two degrees of freedom are not
physical degrees of freedom. They ar gauge degrees of
freedom.

• The gauge degrees of freedom are the consequences of
diffeomorphism invariance of GR.

• The gauge degrees of freedom can be eliminated by
performing calculations in suitable hypersurfaces or by
using gauge-invariant variables which are suitable
combination of perturbed variables.

• In this lecture, we briefly discuss how to eliminate gauge
degrees of freedom by choosing suitable hypersurfaces,
and we will focus on scalar perturbations.



Gauge degrees of freedom

• The gauge transformations in GR are the coordinate
transformations.

• The infinitesimal coordinate transformations can be
written as

τ̃ = τ + ξ0(τ, x i) , x̃ i = x i + ξ,i(τ, x i) , (35)

where ξ0 and ξ are gauge degrees of freedom,



Gauge degrees of freedom

• The metric tensor can be written in terms of the line
element ds2 which is a scalar quantity as

ds2 = gµνdx
µdxν

= a2(τ)
{
− (1 + 2ψ)dτ 2 + 2B,idτdx

i

+ [(1− 2ϕ)δij + 2E,ij ] dx
idx j

}
. (36)

• We now consider gauge transformation of this line
element.

• Up to the first order in the coordinate transformations,
the infinitesimal coordinate transformations yield

ξ0(τ, x i) = ξ0(τ̃ , x̃ i) , ξ(τ, x i) = ξ(τ̃ , x̃ i) , (37)



Gauge degrees of freedom

• The inverse coordinate transformations are

τ = τ̃ − ξ0(τ̃ , x̃ i) , x i = x̃ i − ξ,i(τ̃ , x̃ i) , (38)

• Hence, we have

dτ = d τ̃ − ξ̇0d τ̃ − ξ0,idx̃
i , dx i = dx̃ i − ξ̇,id τ̃ − ξ,i,jdx̃

j .
(39)

• For the scale factor, we have

a(τ) = a(τ̃)− ξ0ȧ(τ̃) . (40)



Gauge degrees of freedom

• Each parts of The line element in new coordinates is
transformed as

−a2(τ)(1 + 2ψ)dτ 2

= −a2(1− 2ξ0H)(1 + 2ψ)(d τ̃ 2 − 2ξ̇0d τ̃ 2

−2ξ0,idx̃
id τ̃) . (41)

2a2(τ)B,idτdx
i

= 2a2B,id τ̃dx̃
i + higher order . (42)

a2(1− 2ξ0H) [(1− 2ϕ)δij + 2E,ij ] dx
idx j

= a2(1− 2ξ0H) [(1− 2ϕ)δij + 2E,ij ]×
(dx̃ idx̃ j − 2ξ̇,id τ̃dx̃ j − 2ξ,i,kdx̃

kdx̃ j) . (43)



Gauge degrees of freedom

• Combining all parts, we get

ds2 = −a2

1 + 2(ψ − ξ0H− ξ̇0︸ ︷︷ ︸
=ψ̃

)

 d τ̃ 2

+2a2(B,i + ξ0,i − ξ̇,i︸ ︷︷ ︸
=B̃,i

)d τ̃dx̃ i

+a2


1− 2(ϕ+ ξ0H︸ ︷︷ ︸

=ϕ̃

)δij

+ 2(E,ij − ξ,ij︸ ︷︷ ︸
=Ẽ,ij

)

 dx̃ idx̃ j

(44)



Gauge degrees of freedom

• Under gauge transformations, the perturbation variables
are transformed as

ψ̃ = ψ −Hξ0 − ξ̇0 , B̃ = B + ξ0 − ξ̇ , (45)

ϕ̃ = ϕ+Hξ0 , Ẽ = E − ξ . (46)

• The spatial gauge degree of freedom can be fixed If we
choose the gauge transformation such that ξ = E which
yields Ẽ = 0.

• The temporal gauge degree of freedom can be fixed if we
choose ξ0 = −B + Ė .



Gauge degrees of freedom

• This means that if we work in the hypersurface on which
B̃ = Ẽ = 0, both temporal and spatial gauge degrees of
freedom are completely fixed.

• The hypersurface on which B̃ = Ẽ = 0 can be reached
from any hypersurfaces if we choose ξ = E and
ξ0 = Ė − B .

• This gauge choice is the Conformal Newtonian Gauge.

• We see that two gauge degrees of freedom could be
eliminated/fixed if we set two of the perturbation
variables to zero.



Gauge degrees of freedom
• Fixing gauge can also be done by choosing the gauge
degrees of freedom based on the gauge transformation
properties of the perturbations in a fluid.

• In general, the gauge degrees of freedom may be not
completely fixed even though two perturbation variables
are set to zero.

• One of the gauge choices, which has been used in
literature, is the Synchronous gauge in which the
perturbations in the temporal components of the metric
vanish, i.e., ψ̃ = B̃ = 0.

• For the Synchronous gauge, we have

ξ0 =
1

a

∫
dτaψ +

f (x i)

a
, (47)

where f (x i) is an arbitrary function of spatial coordinates
which is a residual gauge freedom.



Gauge degrees of freedom

• To fix a residual gauge freedom, we have to put
additional conditions such as symmetry of the system or
work in special frame of fluid, e.g., rest frame of some
fluid component in the universe.

• In the subsequent topics, we will present the evolution
equations for the linear perturbations in the universe.

• The reference for these topics is [arXiv:astro-ph/9506072].



Evolution equations for perturbations
• In the following studies, we will focus on the Newtonian
gauge in which the line element takes the form

ds2 = a2(τ)
{
−(1 + 2ψ)dτ 2 + (1− 2ϕ)dx idxi

}
. (48)

• The following equations will be expressed in the Fourier
space

ψ(τ, x⃗) =

∫
d3ke i k⃗·x⃗ψ(τ, k⃗) (49)

• According to our reference, velocity perturbation is
described in terms of its divergence, and the anisottropic
perturbation is described in terms of shear stress:

(ρ̄+ P̄)θ ≡ ik jδT 0
j , (ρ̄+ P̄)σ ≡ −(k̂i k̂j −

1

3
δij)Σ

i
j ,

(50)

where k̂ = k⃗/|k⃗ |.



Evolution equations for perturbations
• Here, the traceless component of T i

j is

Σi
j ≡ T i

j −
1

3
δi jT

k
k , (51)

• The perturbed Einstein equations in the Newtonian gauge
yield

3H
(
ϕ̇+Hψ

)
+ k2ϕ = −

m2
p

2
a2δδρ , (52)

k2
(
ϕ̇+Hψ

)
=

m2
p

2
a2(ρ̄+ P̄)θ , (53)

ϕ̈+H(ψ̇ + 2ϕ̇) +
(
2Ḣ +H2

)
ψ

+
k2

3
(ϕ− ψ) =

m2
p

2
a2δP , (54)

k2(ϕ− ψ) =
3m2

p

2
a2(ρ̄+ P̄)σ , (55)



Evolution equations for perturbations

• The perturbations in energy density δρ is described by the
dimensionless density contrast δ ≡ δρ/ρ̄.

• The cold dark matter (CDM) can be described by a
perfect fluid, so that the evolution equations for its
perturbations obey ∇νT

ν
µ = 0:

δ̇c = −θc + 3ϕ̇ , θ̇c = − ȧ

a
θc + k2ψ , (56)

where subscript c denotes CDN.

• During some epoch, the mean free path of photons and
neutrinos are very long, so that they perturbations cannot
be described by perfect fluid.



Evolution equations for perturbations in radiation

• To describe perturbations in photon and neutrino, we use
the distribution function which is defined on the phase
space.

• The phase space is spanned by conjugate momentum and
coordinates.

• The conjugate momentum is the spatial component of
the 4-momentum with lower indices denoted by Pi .

• To remove the contribution from the metric tensor, it is
convenien to work with momentum in the orthogonal
bases pi defined as

ηµνpµpν = −m2 = gµνPµPν . (57)

Here, ηµν is the Minkowski metric and m is a rest mass of
a particle.



Evolution equations for perturbations in radiation

• The relation between Pµ and pµ is given by

Pµ = eαµpα , so that gµνeαµe
β
ν = ηαβ . (58)

• For the newtonian gauge, we get

P0 = (1 + ψ)p0 , Pi = ejipj = a(1− ϕ)pi . (59)

• The energy of a particle defined in orthogonal bases is

ϵ =
√

pipi +m2 =
√

p2 +m2 , → P0 = −(1 + ψ)ϵ .
(60)



Evolution equations for perturbations in radiation

• An infinitesimal volume of phase space is
dV = dx1dx2dx3dP1dP2dP3, and number of particles in a
unit volume is

dN = f (x i ,Pj , τ)dV . (61)

• In the background universe, the distribution function
describes is the Fermi-Dirac distribution for fermions and
the Bose-Einstein distribution for bosons given by

f0(ϵ) =
gs
2π2

1

eϵ/T0 ± 1
, (62)

where T0 = aT denotes the present temperature of the
particles, the factor gs is the number of spin state.



Evolution equations for perturbations in radiation

• The energy-momentum tensor can be written in terms of
the distribution function and the 4-momentum
components as

Tµν =

∫
dP1dP2dP3 (−g)−1/2 PµPν

P0
f (x i ,Pj , τ) , (63)

• In the perturbed universe, it is convenien to quantify the
momentum in terms of

qj ≡ apj , (64)

• Moreover, we define the direction of the momentum qi
through the unit vector ni by

qj = qnj , where nini = δij = 1 . (65)



Evolution equations for perturbations in radiation
• the distribution function can be decomposed into the
background and perturbed parts as

f (x i ,Pj , τ) = f0(q)
[
1 + Ψ(x i , q, nj , τ)

]
, (66)

where we have used ϵ = q for massless particles.

• The perturbations in (−g)−1/2 and the volume element
are

(−g)−1/2 = a−4(1−ψ+3ϕ) , dP1dP2dP3 = (1−3ϕ)q2dqdΩ ,
(67)

where dΩ is the solid angle associated with direction ni .

• For example, the component 0-0 of the
energy-momentum tensor is

T 0
0 = −a−4

∫
q3dq dΩ f0(q) (1 + Ψ) . (68)



Evolution equations for perturbations in radiation

• For the background, we have

ρ̄ = a−44π

∫
q3dq f0(q) . (69)

• For the perturbation, we get

δρ = 3δP = a−4

∫
q2dqdΩ qf0(q)Ψ . (70)

• In the Fourier space, the distribution function becomes

f (k i , q, nj , τ) → f (x i , q, nj , τ) , (71)

where k i is a wavenumber of the Fourier modes.



Evolution equations for perturbations in radiation
• We can integrate out q from the distribution function,
and expand the angular-dependent part of the resulting
function in a series of Legendre polynomials Pl(k̂ · n̂) as

F (k⃗ , n̂, τ) ≡
∫
q3dqf0(q)Ψ∫
q3dqf0(q)

=
∞∑
l=0

(−i)l(2l+1)Fl(k⃗ , τ)Pl(µ) ,

(72)
where µ ≡ k̂ · n̂ = cos θ.

• For example:

δ ≡ δρ

ρ̄
=

∫
dΩ

∫
q3dqf0(q)Ψ

4π
∫
q3dq f0(q)

=
1

4π

∫
dΩF (k⃗ , n̂, τ)

=
1

2

∫
dµ

∞∑
l=0

(−i)l(2l + 1)Fl(k⃗ , τ)Pl(µ) = F0 ,



Evolution equations for perturbations in radiation

• In the previous calculation, we have used
dΩ = 2π sin θdθ = −2πd cos θ = −2πdµ, and∫ 1

−1

Pl (x)Pm (x) dx =
2

2l + 1
δlm . (73)

• For θ and σ, one can show that

θ =
3

4
kF1 , σ =

1

2
F2 . (74)



Evolution equations for perturbations in radiation
• The evolution of the distribution function is described by
the Boltzmann equation which is given in real space by

∂f

∂τ
+

dx i

dτ

∂f

∂x i
+

dq

dτ

∂f

∂q
+

dni
dτ

∂f

∂ni
=

(
∂f

∂τ

)
C

, (75)

where the term on the RHS corresponds to the collision
between the group of particles described by the
distribution function and the other particles.

• The term dx i/dτ can be written as

dx i

dτ
=

dλ

dτ

dx i

dλ
=

dλ

dτ
P i , (76)

where λ is an affine parameter.

• We can compute dλ/dτ as

Pα =
dxα

dλ
, → dλ

dτ
=

1

P0
. (77)



Evolution equations for perturbations in radiation

• Hence,
dx i

dτ
=

P i

P0
=

qni

ϵ
, (78)

where we keep the first order in perturbation.

• The term dq/dτ can be computed from the geodesic
equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 . (79)

• Using dλ/dτ on the previous page, the above equation
becomes

P0dP
µ

dτ
+ ΓµαβP

αPβ = 0 , (80)



Evolution equations for perturbations in radiation

• Hence, we get

dq

dτ
= qϕ̇− ϵ(q, τ) ni∂iψ . (81)

• The terms dni/dτ and ∂f /∂ni are first order in
perturbation, so that we ignore the multiplication of these
terms.

• The Boltzmann equation in the Fourier space is

∂Ψ

∂τ
+i

q

ϵ
(k⃗ ·n̂)Ψ+

d ln f0
d ln q

[
ϕ̇− i

ϵ

q
(k⃗ · n̂)ψ

]
=

1

f0

(
∂f

∂τ

)
C

.

(82)



Evolution equations for perturbations in neutrino
• Let us first consider the case of massless neutrino, for this
case there is no collision term, so that

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[
ϕ̇− i

ϵ

q
(k⃗ · n̂)ψ

]
= 0 . (83)

In the following calculation, we will set ϵ = q.

• We integrate the above equation over q3dq and divide
the result by

∫
q3dq as∫

q3dq

{
∂f0Ψ

∂τ
+ ikµf0Ψ+ q

df0
dq

[ϕ′ − ikµψ]

}
= 0 ,

∂F

∂τ
+ ikP1(µ)F +

∫
q4dq

df0
dq︸ ︷︷ ︸

=−4
∫
q3dqf0

[ϕ′ − ikP1(µ)ψ]∫
q3f0dq

= 0 ,

∂F

∂τ
+ ikP1(µ)F − 4P0(µ) [ϕ

′ − ikP1(µ)ψ] = 0 . (84)



Evolution equations for perturbations in neutrino

• To extract the evolution equations for the multipole
moments, we multiply the equation on the previous slide
by Pl(µ) and integrate the result over µ.

• The coupled differential equations for the multipoles
expansion of neutrino distribution:

δ̇ν = −4

3
θν + 4ϕ̇ ,

θ̇ν = k2

(
1

4
δν − σν

)
+ k2ψ ,

Ḟν l =
k

2l + 1

[
lFν (l−1) − (l + 1)Fν (l+1)

]
, l ≥ 2 .

(85)



Evolution equations for perturbations in photon

• We now consider the Boltzmann equation for the photon.

• For the photon, there is a coupling between photon and
charged particles.

• The coupling arisen from the Compton scattering
between photons and electrons and the effects of
scattering are transfered to baryons through the Coulomb
interaction between baryons and electrons.

• Since the mass of the charged baryons (protons) is much
larger than the mass of electrons, the main contribution
to the scattering process comes from baryons (through
baryon velocity).

• Hence, This scattering process is usually called the
coupling between photons and baryons.



Evolution equations for perturbations in photon

• The Boltzmann equation for photon is

∂F

∂τ
+ ik(µF − 4 [ϕ′ − ikµψ]

= aσTne

[
F0 + 4ikµvb − F − 1

2
F2P2 (µ)

]
. (86)



Evolution equations for perturbations in photon
• The EOM for the multipole moments of photon
perturbations are

δ̇γ = −4

3
θγ + 4ϕ̇ ,

θ̇γ = k2

(
1

4
δγ − σγ

)
+ k2ψ + aneσT (θb − θγ)︸ ︷︷ ︸

coupling

,

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3

−9

5
aneσTσγ︸ ︷︷ ︸

coupling

+
1

10
aneσT (Gγ 0 + Gγ 2) ,

Ḟγ l =
k

2l + 1

[
lFγ (l−1) − (l + 1)Fγ (l+1)

]
− aneσTFγ l︸ ︷︷ ︸

coupling

, l ≥ 3 (87)



Evolution equations for perturbations in baryon

• For baryon, we have to add the contribution from
energy-momentum transfer due to photon coupling to the
evolution equation for θb, such that the photon-baryon
fluid is conserved.

• The evolution equations for perturbations in baryon are

δ̇b = 3ϕ̇− θb , (88)

θ̇b = −Hθb + k2c2bδb + k2ψ +
4ρ̄γ
3ρ̄b

aneσT (θγ − θb)︸ ︷︷ ︸
coupling

,

(89)

where c2b is a baryon sound speed.



Tight coupling

• Before recombination the electrons number density ne is
large, so that photons and baryons are tightly coupled,
with

aneσT ≡ τ−1
c ≫ H ∼ τ−1 . (90)

• In the tight coupling limit, we suppose that τc/τ ≪ 1 and
kτc ≪ 1.

• In this limit, we have

θ̇γ = aneσT (θb − θγ) , (91)

θ̇b =
4ρ̄γ
3ρ̄b

aneσT (θγ − θb) . (92)



Tight coupling

• Hence,

θ̇γ − θ̇b = −aneσT

(
1 +

4ρ̄γ
3ρ̄b

)
(θγ − θb) , (93)

yielding θγ → θb exponentially.

• Due to tight coupling, we have

Ḟγ l = −aneσTFγ l , l ≥ 3 . (94)

Hence, Fγ l decreases exponentially.



The acoustic oscillation

• The temperature perturbations is related to the average
distribution function F as

∆T =
1

4
Fγ . ⇒ ∆T0 =

1

4
Fγ0 =

1

4
δγ . (95)

• Above the photon diffusion scale, the photons and
baryons are tightly coupled.

• At recombination, the diffusion length is much smaller
than the Hubble horizon, implying that we consider small
scales perturbations.



The acoustic oscillation

• The evolution equation for the temperature perturbations
is

∆̈T0 +
Ṙ

1 + R
∆̇T0 + k2c2s∆T0 = F , (96)

where c2s is the sound speed of the photon-baryon fluid
defined as

c2s ≡ 1

3

1

1 + R
, (97)

and the force term is

F ≡ ϕ̈− k2

3
ψ +

Ṙ

1 + R
ϕ̇ . (98)

• The above equation describes the oscillation of the
photon-baryon fluid in the gravitational driving forces due
to external potentials.



The acoustic oscillation

• The solution can be computed using the Green method as

[1 + R]1/4∆T0

= ∆T0|I cos krs +
√
3

k
[∆̇T0 +

1

4
Ṙ∆T0]I sin krs (99)

+

√
3

k

∫ τ

τI

dτ ′[1 + R(τ ′)]3/4sin[krs(τ)− krs(τ
′)]F (τ ′) ,

where a subscript I denotes evaluation at the initial time.

• Here, rs is the sound horizon defined as

rs ≡
∫ τ

0

csdτ
′ . (100)



The acoustic oscillation

• For an adiabatic perturbations, we have

∆T0 ∝ sin(krs) (101)

• Hence, ∆T0 has peaks at

krs = (n − 1)π , n ∈ {1, 2, 3, ...} . (102)



Perturbations on large scales

• On large scales the effect of the tight coupling is
negligible, so that the evolution equations for radiation
(photon + neutrino) and matter (CDM + baryon) can be
read from Eqs. (87) and (??) as

δ̇r = −4

3
θr + 4ϕ̇ , θ̇r = k21

4
δr + k2ψ , (103)

δ̇m = 3ϕ′ − θm , θ̇m = −Hθm + k2ψ , (104)

where a subscript r denotes radiation while a subscript b

denotes matter.



Perturbations on large scales

• To solve the previous evolution equations, we use the
perturbed Einstein equations to write ψ and ϕ in terms of
the density contrast and velocity perturbations.

• Adiabatic condition:

δm =
1

4
δr . (105)

• We get

ψ = −1

2
δr = constant , → ∆T0 = −1

2
ψ , (106)

which describe the temperature perturbations due to the
metric perturbations on the last scattering surface. This
is an ordinary Sachs-Wolfe effect.



Perturbations on large scales

• When the universe evolves through the matter-radiation
equality the metric perturbation on large scales change.

• This gives the contribution to the ordinary Sachs-Wolfe
effect, so that

[∆T0 + ψ] =
1

3
ψ, (107)

which is the Sachs-Wolfe effect.



free streaming

• After recombination, photons decouple from baryons and
consequently freely propagate (free streaming) from the
last scattering surface to observers at present.

• for l ≥ 2, the eom for photon multipoles take the form of
the recursion relation of the spherical Bessel function
jl(x),

d

dx
jl(x) =

l

2l + 1
jl−1(x)−

l + 1

2l + 1
jl+1(x) , (108)

⇒ d

dτ
jl(kτ) =

l

2l + 1
kjl−1(kτ)−

l + 1

2l + 1
kjl+1(kτ) .



free streaming

• By writing the eoms for monopole and dipole is suitable
forms, we get

∆T l (τ, k) = [∆T0 + ψ]︸ ︷︷ ︸
SW effect

(τs , k) jl (k(τ − τs))

+

∫ τ

τs

dτ ′ [ψ′(τ ′) + ϕ′(τ ′)] jl (kτ − kτ ′) , (109)

where a subscript s denotes evaluation on the Last
scattering surface, the second term on the RHS of this
equation is the contribution to the temperature
perturbations from the time-dependence of the metric
perturbations, and this contribution is the integrated
Sachs-Wolfe (ISW) effect arising during the free
streaming.



free streaming

• The free streaming can also distribute oscillation of the
temperature perturbations in photon-baryon fluid on the
Last scattering surface to higher multipoles.

•
∆T l (τ0, k) = ∆T0 ,osc (τs , k) jl (kτ∗) , (110)

where τ∗ ≡ τ0 − τs .

• For the adiabatic case, ∆T0 ,osc (τs , k) has pakes at

k =
nπ

rs
, n ∈ {0, 1, 2, 3, ...} . (111)



free streaming

• According to the maximum of the spherical Bessel
function jl(kτ∗) at l ≃ kτ∗, the maximum of ∆2

T0osc

occurs around
l = n

πτ∗
rs

= nlA , (112)

where lA is a characteristic acoustic index.



The angular power spectra of CMB

• Photons, which free streming from the last scattering
surface to observer at present, are redshifted due to the
expansion of the universed such that the wavelengths of
the photons are in the range of microwave.

• These photons are distributed almost smoothly in the
universe, so that they can be viewed as the photons
background in the universe known as the Cosmic
Microwave Background (CMB).

• To connect predictions from the cosmological models
with observations, the temperature perturbations of the
CMB are quantified by power spectrum.



The angular power spectra of CMB
• Since we observe the CMB photons at present and at our
location in difference direction n̂, we expand
n̂–dependence in terms of spherical harmonics Ylm(n̂) as

∆T (x⃗0, n̂, τ0) =
∑
l ,m

almYlm(n̂) , (113)

where suvscript 0 denotes evaluation at present.

• We define the angular power spectrum Cl of the CMB
perturbation/anisotropy in terms of alm as

⟨alma∗l ′m′⟩ = δll ′δmm′Cl . (114)

• Due to the statistical homogeneity and isotropy of the
perturvation fields, the angular power spectrum Cl does
not depend on position and m, and ⟨alma∗l ′m′⟩ vanishes for
l ̸= l ′ or m ̸= m′.



The angular power spectra of CMB

Figure: Angular power spectrum of the temperature perturbations
in the Cosmic Microwave Background (CMB).



Line of Sight Integration
• The reference of this topic is [astro-ph/9603033]. We
define differential optical depth for Thomson scattering as
κ̇ = aneσT .

• When the polarization is included, the Boltzmann
equation for photon perturbations becomes

∆̇
(S)
T + ikµ∆

(S)
T = ϕ′ − ikµψ

+κ̇

[
−∆

(S)
T +∆

(S)
T0 + iµvb +

1

2
P2(µ)Π

]
, (115)

where ∆
(S)
T is the scalar mode of the temperature

perturbation.

• Here,
Π = ∆

(S)
T2 +∆

(S)
P2 +∆

(S)
P0 , (116)

where ∆
(S)
P is the scalar mode of polarization in

temperature perturbation.



Line of Sight Integration

• The Boltzmann equation can be written in the integral
form as

∆
(S)
T =

∫ τ0

0

dτ e ikµ(τ−τ0)︸ ︷︷ ︸
angular dependent

S
(S)
T (k , τ) . (117)

• For the temperature perturbation, the source term is

S
(S)
T (k , τ) = g

(
∆T0 + ψ − v ′

b

k
− Π

4
− 3Π′′

4k2

)
+ e−κ (ϕ′ + ψ′)− g ′

(
vb
k

+
3Π′

4k2

)
− 3g ′′Π

4k2
.

(118)



Line of Sight Integration

• We use the decomposition

eikµ(τ−τ0) =
∞∑
l=0

(2l + 1)(−i)l jl(k(τ0 − τ))Pl(µ) . (119)

• We finally get

∆
(S)
(T ,P)l(k , τ = τ0) =

∫ τ0

0

S
(S)
T ,P(k , τ)jl [k(τ0 − τ)]dτ,

(120)

• The advantage of (120) is the decomposition of ∆
(S)
(T ,P)l

in to S
(S)
T ,P , which does not depend on the multipole

moment l and a geometrical term jl , which does not
depend on the particular cosmological model.


