(Small-scale)
Challenges to the ^CDM Paradigm
SUT School in Astronomy and Cosmology
11 May 2024
Nicha Leethochawalit (NARIT)

(Small-scale) Challenges to the \wedge CDM Paradigm

Missing Satellite

Cusp-Соге Problem

Too bit too fail

Scales in galaxycosmology studies

Scales in galaxy-cosmology studies: stellar mass

Iypical galaxy stellar mass is $10^{6}-10^{12}$ Msun

Scales in galaxy-cosmology studies: stellar mass

Milkyway is a typical galaxy

Iypical galaxy stellar mass is $10^{6}-10^{12}$ Msun

Scales in galaxy-cosmology studies: galaxy sizes

Iy.pical galaxy size is $1-10 \mathrm{kpc}$

$\log \left(M^{*} / M s u n\right)$

Scales in galaxy-cosmology studies
Typical distance between galaxies is

Xxx Mpc

Scales in galaxy-cosmology studies

Typical distance between galaxies is

1 Mpc

Scales in galaxy-cosmology studies: universe scale

What about size of the universe??

search: cosmology calculator

galaxy at redshift z = 11?

Scales in galaxy-cosmology studies: universe scale

$$
\begin{gathered}
\text { scale factor } \\
a(z) \equiv 1 /(1+z) \\
\text { where } a(z=0)=1
\end{gathered}
$$

Scales in galaxy-cosmology studies: universe scale

$$
\begin{gathered}
\text { scale factor } \\
a(z) \equiv 1 /(1+z) \\
\text { where } a(z=0)=1
\end{gathered}
$$

Comoving distance is 'how far we are from that galaxy if the universe were to be frozen now ($\mathrm{z}=0$)'

Scales in galaxy-cosmology studies

So, what is the observable universe (the horizon) size in comoving scale?

Scales in galaxy-cosmology studies

So, what is the observable universe (the horizon) size in comoving scale?
 ~15000 Mpc in radius

Scales in galaxy-cosmology studies

Conclusion:

galaxy stellar mass: $10^{6}-10^{12}$ Msun galaxy size: 1-10 kpc
distance between galaxies: 1 Mpc Universe size: 15000 Mpc

Observations

the Universe

Cosmological Simulations

universes that are statistically consistent with the Universe

Cosmological Simulations

^CDM (Lambda cold dark matter) model - standard model of Big Bang cosmology

A universe that is dominated by cold dark matter and dark energy

Space-time described by Friedmann equations

$$
\begin{aligned}
\left(\frac{\dot{a}}{a}\right)^{2} & =\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{3}+\frac{\Lambda c^{2}}{3} \\
\frac{\ddot{a}}{a} & =-\frac{4 \pi G}{3}\left(\rho+\frac{3 p}{c^{2}}\right)+\frac{\Lambda c^{2}}{3}
\end{aligned}
$$

With some definitions, the first eq can be written in a more familiar form:

$$
H(z)=H_{0} \sqrt{\Omega_{M}(1+z)^{3}+\Omega_{k}(1+z)^{2}+\Omega_{\Lambda}}
$$

Cosmological N -Body simulations: work well for large scales (>0.1-10 Mpc)

Ingredients

- Cold gravitating components
- Cosmological Constant

Initial

Conditions
Gaussian initial field
(primordial fluctuation
right after Big Bang)

Physics

- GR at background level
- gravity

Cosmological N-Body simulations: work well for large scales (>0.1-10 Mpc)

Ingredients

- Cold gravitating components
- Cosmological Constant

Initial

Conditions

> Gaussian initial field
> (primordial fluctuation right after Big Bang)

Physics

Cosmological hydrodynamical simulations:

 most powerful tool to study stellar halos (galaxies, galaxy clusters,etc)
Ingredients

- Cold gravitating components
- Cosmological

Constant

- baryons

Initial
 Conditions

Gaussian initial field
(primordial fluctuation right after Big Bang)

Physics

- GR at background level
- gravity
- hydrodynamics, star formation and evolutions, feedback (winds/SN/AGNs), blackholes

Cosmological hydrodynamical simulations: Powerful. Yet, challenges remain

computationally
expensive (20-100X more than DM only)

Unresolved physics remain -> assumptions on star
formation, feedback etc

Cosmological hydrodynamical simulations: There are two main kinds

Big Box simulations
Illustris, EAGLE, Horizon-AGN,...

Zoom-in simulations FIRE, APOSTLE, NIHAO,... m12i

Cosmological hydrodynamical simulations: There are two main kinds

Big Box simulations
Illustris, EAGLE, Horizon-AGN,...

Low resolution but large --> good for large scale structures, statistic
samples

Zoom-in simulations FIRE, APOSTLE, NIHAO,...

High resolution but small samples --> better tools to study small scales such as giant molecular clouds, star clusters, satellite galaxies

Number of particles in N -body simulations has been increasing exponentially

31 - Millenium
43 - Eagle
55 - FIRE-2
56 - Illustris-TNG
62 - Uchuu

Number of particles in N -body simulations has been increasing exponentially

31 - Millenium	$: 500$ cMpc
43 - Eagle	$: 25-100 \mathrm{cMpc}$
$55-$ FIRE-2	$: \sim 25 \mathrm{cMpc}$
56 - Illustris-TNG $: 50-300 \mathrm{cMpc}$	
62 - Uchuu	$: 140 \mathrm{cMpc}$

Number of particles in N -body simulations has been increasing exponentially

31 - Millenium : 500 cMpc
43 - Eagle : 25-100 cMpc
55 - FIRE-2 : ~25 cMpc
56 - Illustris-TNG : 50-300 cMpc
62 - Uchuu : 140 cMpc

Scales:
galaxy stellar mass: $10^{6}-10^{12}$ Msun galaxy size: 1-10 kpc
distance between galaxies: 1 Mpc Universe size: 15000 Mpc

Missing satellites problem

The problem is noticed even at the early dark matter only simulations

Method to relate dark matter halos in the simulations to observed light from stars and gas (baryons) in galaxies

Abundance matching

Abundance matching

Main assumption: Galaxies and dark matter halos are related in a one-to-one way; the most massive galaxies live in the most massive dark matter halos

In principle, $\mathrm{M}_{\text {halo }}>10^{7} \mathrm{M}_{\circ}$ should be large enough to support molecular cooling

Abundance matching

Main assumption: Galaxies and dark matter halos are related in a one-to-one way; the most massive galaxies live in the most massive dark matter halos

The results of the abundane matching is the relationship between virial mass (~halo mass) and stellar mass

Does the unobserved population really follow this trend? Are there that many of them?

It is unlikely that there are thousands of undiscovered dwarf galaxies

Not suggesting any solutions, but to point out how difficult to detect dwarf galaxies

Bullock and Boylan-Kolchin 2019

Cusp - Core problem

Cold dark matter halos in simulations show the profile that is cuspy in the middle

NFW profile

$$
\rho(r)=\frac{4 \rho_{-2}}{\left(r / r_{-2}\right)\left(1+r / r_{-2}\right)^{2}}
$$

What happen at large r? What about small r?

Cold dark matter halos in simulations show the profile that is cuspy in the middle

NFW profile

$$
\rho(r)=\frac{4 \rho_{-2}}{\left(r / r_{-2}\right)\left(1+r / r_{-2}\right)^{2}}
$$

Observationally, another way to relate dark matter to observable is via rotation curve (in addition to abundance matching)

$$
\frac{v_{c i r c}^{2}}{R}=\frac{G M(R)}{R^{2}}
$$

First rotation curves were measured in 1970s. Soon we found that disc galaxies have flat rotation curves.

What does flat rotation curve mean? Is it consistent with NFW profile?

$$
\frac{v_{c i r c}^{2}}{R}=\frac{G M(R)}{R^{2}}
$$

NFW profile

$$
\rho(r)=\frac{4 \rho_{-2}}{\left(r / r_{-2}\right)\left(1+r / r_{-2}\right)^{2}}
$$

When we measure the rotation curves in the inner core of dwarf galaxies we found that they all have flat density profile at the core

Too big too fail problem

When we measure the rotation curves in the inner core of dwarf galaxies we found that they all have flat density profile at the core

Your turn to look for solutions

Lambda-CDM

Simulations

Observation

Conclusion:
galaxy stellar mass: $10^{6}-10^{12} \mathrm{Msun}$ galaxy size: 1-10 kpc distance between galaxies: 1 Mpc Universe size: 15000 Mpc

Wetzel+2016 RECONCILING DWARF GALAXIES WITH ^CDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY-MASS GALAXY

Kim+2016 There is No Missing Satellites Problem
Slide adapted from https://www2.mpia-hd.mpg.de/homes/stellarhalos2018-loc/sh2018/slides/02.07.Wetzel.pdf

