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• Probability as a measure 
of uncertainty


• Various applications in 
many fields e.g. physics, 
finance, gaming
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Probability
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Applications of Probability

Applications of 
Probability

Decision Making 
• Helps in making informed 

decisions under uncertainty.

• Enables risk assessment and 

management.

Finance and Investing 
• Predicts market trends and 

evaluates investment 
opportunities.

Scientific Research 
• Used to analyze experimental 

data and draw conclusions.

• Aids in hypothesis testing 

and model building.

Insurance Industry 
• Calculates premiums and 

assesses risks.

Weather Forecasting 
• Forecasts future weather 

conditions based on 
historical data and statistical 
models.

Quality Control 
• Monitors product quality and 

identifies potential defects.
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4 The basics

Fig. 1.1 A schematic representation of (a) deductive logic, or pure mathematics, and (b) plausible
reasoning, or inductive logic.

designed to indicate that it is a much harder problem. The most we can hope to do is to
make the best inference based on the experimental data and any prior knowledge that
we have available, reserving the right to revise our position if new information comes to
light. Around 500 BC, Herodotus said much the same thing: ‘A decision was wise, even
though it led to disastrous consequences, if the evidence at hand indicated it was the
best one to make; and a decision was foolish, even though it led to the happiest possible
consequences, if it was unreasonable to expect those consequences.’
Even though plausible reasoning is rather open-ended, are there any general quanti-

tative rules which apply for such inductive logic? After all, this issue is central to data
analysis.

1.2 Probability: Cox and the rules for consistent reasoning
In 1946, Richard Cox pondered the quantitative rules necessary for logical and con-
sistent reasoning. He started by considering how we might express our relative beliefs
in the truth of various propositions. For example: (a) it will rain tomorrow; (b) King
Harold died by being hit in the eye with an arrow at the battle of Hastings in 1066 AD;
(c) this is a fair coin; (d) this coin is twice as likely to come up heads as tails; and so
on. The minimum requirement for expressing our relative beliefs in the truth of these
propositions in a consistent fashion is that we rank them in a transitivemanner. In other
words, if we believe (a) more than (b), and (b) more than (c), then we must necessarily
believe (a) more than (c); if this were not so, we would continue to argue in circles.
Such a transitive ranking can easily be obtained by assigning a real number to each of
the propositions in a manner so that the larger the numerical value associated with a
proposition, the more we believe it.

Deductive Logic  
(What you learn 

in a science class)

Inductive Logic  
(What science actually is)

Deductive vs Inductive



There are different ways we can interpret probability:


• Frequentist interpretation: 
probability as an objective property of the world, defined 
as the long-run frequency of an event.  


• Bayesian interpretation: 
probability as a degree of belief or uncertainty about a 
proposition. It can be updated as new evidence is 
obtained.

5

Interpretation of Probability
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• There are two distinct approaches to statistical inference,  
along with their underlying definitions of probability.

Approach Frequentist Bayesian

Definition of Probability Probability is seen as the 
long-run relative 
frequency of an event 
occurring in repeated, 
independent 
experiments. It is based 
on objective, observable 
frequencies.

Probability is seen as a 
measure of belief or 
certainty about an event. 
It incorporates both prior 
knowledge and new 
evidence to update 
beliefs.

Frequentist vs Bayesian
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Approach Frequentist Bayesian
Parameters Parameters are fixed, 

unknown values. 
Inference is about 
estimating these fixed 
values based on 
observed data. 

Parameters are 
considered random 
variables with probability 
distributions. Inference 
involves updating prior 
distributions with 
observed data to obtain 
posterior distributions.

Subjectivity It is considered an 
objective approach, as 
probabilities are based 
on observed frequencies, 
and conclusions are not 
influenced by subjective 
beliefs.

Acknowledges 
subjectivity, as it allows 
the incorporation of prior 
beliefs. Bayesian 
inference is sensitive to 
the choice of priors.

Frequentist vs Bayesian
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Approach Frequentist Bayesian
Hypothesis Testing Emphasizes hypothesis 

testing, focusing on 
rejecting or failing to 
reject null hypotheses 
based on the observed 
data.

While hypothesis testing 
is possible, Bayesian 
inference often focuses 
on estimating parameters 
and updating beliefs 
rather than strict 
hypothesis testing.

Prior Information Typically does not 
incorporate prior beliefs 
or subjective information 
about parameters. 

Incorporates prior 
information, allowing 
researchers to include 
existing knowledge or 
beliefs about parameters 
in the analysis.

Frequentist vs Bayesian
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P(A | B) =
P(A \ B)

P(B)

Conditional Probability

P(A) Observing the data.

P(B) The theory is true.

P(A | B) The data is observed given

that the theory is true

Conditional Probability
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Bayesian Rule

Symmetry Rule

P(B \ A) = P(A \ B)

P(B | A)P(A) = P(A | B)P(B)

P(B | A) =
P(A | B)P(B)

P(A)

Bayesian Rule
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"There are no problems left in statistics 
except the assessment of probability” 

Lindley (2000)

Bayesian Rule
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Bayesian Statistics
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P(H |D) =
P(D |H)P(H)

P(D)

P(H) Probability that the hypothesis is true.

P(D |H) Probability that the data is observed
given that the hypothesis is true.

P(D) Probability that the collections of data
is liable.

P(H |D) Probability that the hypothesis is true
given that the data is true.

Prior

Likelihood

Evidence

Posterior

Glossary



• A theory usually have many parameters, for example  
a two-parameter model 
 

• The hypothesis is the assumption that the parameter
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⇥ = {⇥1,⇥2}

Hypothesis 1 (H1) : ✓1 = 1.0, ✓2 = 1.2

H1 ⌘ ✓1 = {✓1, ✓2}

Hypothesis Space
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• The prior probability is the distribution of the parameters 
we know before the experiment (degree of belief).


• We can have a uniform distribution for total ignorance or 
a normal distribution if mean and standard deviation are 
given.

Prior Probability
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• In most cases, we are working with the logarithm of  
the likelihood function called log-likelihood.


• Expanding around the maximum of the log-likelihood 
at      i.e.

L(x|✓) = lnL(x|✓)

✓0

@L

@✓↵

����
✓=✓0

= 0

L(x|✓) = L(x|✓0) +
1

2

X

↵,�

@2L

@✓↵@✓�

����
✓=✓0

�
✓↵ � ✓↵0

��
✓� � ✓�0

�
.

Likelihood
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• We define the precision matrix      as 
 
 
where 
 

• The likelihood is then given by

P

L(x|✓) = L(x|✓)� 1

2

�
✓ � ✓0

�T · P ·
�
✓ � ✓0

�
,

P↵� ⌘ � @2L

@✓↵@✓�

����
✓=✓0

L(x|✓) / exp
 

� 1

2

�
✓ � ✓0

�T · P ·
�
✓ � ✓0

�
!
.

Likelihood
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• The inverse of the precision matrix is called 
covariance matrix 

then 
 

• The variance of the parameter can be estimated as

L(x|✓) / exp
 

� 1

2

�
✓ � ✓0

�T ·C�1 ·
�
✓ � ✓0

�
!
.

C ⌘ P�1

Var(✓↵) = C↵↵ = �2
✓↵ .

Likelihood



Suppose that we have a proposition  with its negative 
counterpart .  From the sum rule





This is called marginalisation. 





or


B
B

P (A,B|I) + P (A,B|I) = P (A|I).

P (A,B1|I) + P (A,B2|I) + . . .+ P (A,BN |I) = 1,

Z
dBP (A,B|I) = P (A|I).
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Marginalization
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• The evidence is usually considered as a normalization 
constants — nothing to do with parameter estimations.


• However, the evidence is important for model comparison .

P(✓1|x) =
L(x|✓1)⇡(✓1)

D(x|M1)
, P(✓2|x) =

L(x|✓2)⇡(✓2)

D(x|M2)

Evidence
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The evidence could be computed by marginalize over the 
hypothesis space.





where  is the unnormalized posterior.

Z =

Z
L(⇥)⇡(⇥)d⇥ ⌘

Z
P̃(⇥)d⇥

P̃(⇥) ⌘ L(⇥)⇡(⇥)

Evidence



• This is the revised probability of the event or hypothesis 
after considering the new data.
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Posterior Probability
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Bayesian Rule

OR



• Monty shows you three closed doors and tells you that there is a 
prize behind each door: one prize is a car the other two are less 
valuable prizes like goats.  The prizes are arranged at random.


• The object of the game is to guess which door has the car.  If you 
guess right, you get to keep the car.


• You pick a door, which we will call Door A.  We'll call the other 
doors B and C.
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Example: Monte Hall Problem



• Before opening the door you chose, Monty increases the 
suspense by opening either Door B or C, whichever does not 
have the car.  (If the car is actually behind Door A, Monty can 
safely open B or C, so he chooses one at random.)


• Then Monty offers you the option to stick with your original 
choice or switch to the one remaining unopened door.


The question is, should you stick or switch or does it make no 
difference?  

25

Example: Monte Hall Problem
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Example: Monte Hall Problem



• Making educated guesses:  
This is the revised probability of the event or hypothesis after 
considering the new data.


• Quantifying uncertainty: 
Provide constraints on the range of possible model parameter 
values.


• Generating predictions: 
Predict observables or other variables that depend on the 
model parameters.


• Comparing models: 
Use the evidences from different models to determine which 
models are more favorable.
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What are Posteriors Good for?
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2D Marginalized Posterior PDF
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Model Comparison
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Variance and Covariance

Variance is the average of the square deviation from 
the mean of a parameter,





Covariance is the average of the joint deviation from 
the mean of two parameters,


Var
�
✓
�
= E

⇣�
✓ � E (✓)

�2⌘
.

Cov
�
✓i, ✓j

�
= E

⇣�
✓i � E (✓i)

��
✓j � E (✓j)

�⌘
.



• The covariance matrix is related to the correlation matrix
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C =

0

B@
Var(✓1) . . . Cov(✓1, ✓n)

... . . .
Cov(✓n, ✓1) . . . Var(✓n)

1

CA

C =

0

B@
�✓1 . . . 0
... . . . ...
0 . . . �✓n

1

CA ·R ·

0

B@
�✓1 . . . 0
... . . . ...
0 . . . �✓n

1

CA

where       is the correlation matrix.R

Covariance Matrix
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R =

0

B@
1 . . . Corr(✓1, ✓n)
... . . . ...

Corr(✓n, ✓1) . . . 1

1

CA

• The correlation matrix

• where

Corr(✓↵, ✓�) =
Cov(✓↵, ✓�)

�✓↵�✓�

Correlation Matrix
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Correlations
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Parameter Estimation

• The posterior encodes our inference about the parameter 
in the model, given the data and the relevant background 
information.  


• We wish to summarize this with just two numbers: the 
best estimate (mean) and a measure of its reliability 
(deviation).


• With posterior we could either calculate the average value 
or the maximum likelihood value;


dP
d✓

����
✓=✓0

= 0 or r⇥P = 0.
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Parameter Estimation

• The approximation 2D 
marginalized probability 
density will an ellipse.


• For a 1sigma confidence 
region (68%)





• Other confidence regions





�2
1� = 2.30

�2
2� = 6.18

�2
3� = 11.83
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• The posterior pdf are usually has no analytic form, which 
we will have to use numerical method to approximate the 
posterior.


• In 1D, we can approximate it using standard numerical 
techniques such as a Riemann sum over a discrete grid 
of points:





where


EP (f(⇥)) =

Z
f(⇥)P(⇥)d⇥ ⇡

nX

i=1

f(⇥i)P(⇥i)�⇥i

�⇥i = ⇥j+1 �⇥j

Approximating Posterior with Grids



• We could take the mid points as the sampling points:





• We could generalized to higher dimension in a similar way,





• However the number of sampling points will increase 
exponentially - this is the curse of dimensionality.

⇥i =
⇥j+1 +⇥j

2

�⇥i =
dY

j=1

�⇥i,j
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Approximating Posterior with Grids
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Approximating Posterior with Grids



• Uniform sampling method has a drawback of spending a 
lot of computational time on the region with low 
probability i.e.  is small.


• For high dimensional space, most of the volume will have 
low probability.


• We will take the posterior into account as the weight of 
the grid point;


P̃(⇥)

wi ⌘ P̃(⇥i)�⇥i
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Effective Sampling Size
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Effective Sampling Size



• Convergence is the idea that, while our estimates using n 
samples (grid points) might be noisy, it approaches some 
fiducial value as :





• Consistency is subsequently the idea that the value we 
converge to is the true value we are interested in 
estimating:


n ! 1

lim
n!1

Pn
i=1 f(⇥i)P̃(⇥i)�⇥iPn

i=1 P̃(⇥i)�⇥i

= C

lim
n!1

Pn
i=1 f(⇥i)P̃(⇥i)�⇥iPn

i=1 P̃(⇥i)�⇥i

= EP (f(⇥))
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Convergence and Consistency
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Convergence and Consistency
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• A Markov chain is a chain of states in a parameter space 
that is “memoryless” (Markov property).

How the stage change depends only on the current state.

Markov Chain Monte Carlo (MCMC)
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• A Monte Carlo is a method using random walk to generate 
the output. (rejection sampling method)

Markov Chain Monte Carlo (MCMC)
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proposal distributiontransitional probability

prior probability

P(✓1 ! ✓2) / ⇡(✓1) q(✓1 ! ✓2)

• The Metropolis-Hastings algorithm is an algorithm for 
random walks that will eventually converge to a true 
distribution of the parameter space.

Metropolis-Hasting Algorithm
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The change of state from      to       is governed by  
the acceptance rate

✓1 ✓2

↵(✓1 ! ✓2) = min
⇢
1,
⇡(✓2) q(✓2 ! ✓1)
⇡(✓1) q(✓1 ! ✓2)

�

We are assumed an equilibrium state; hence,
q(✓1 ! ✓2) = q(✓2 ! ✓1)

Therefore,

↵(✓1 ! ✓2) = min
⇢
1,
⇡(✓2)
⇡(✓1)

�

Metropolis-Hasting Algorithm
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alpha = likelihood2 / likelihood1;
if alpha > 1:

jump to the new state;
else:

if alpha > rand();
jump to the new state;

else:
remain in the same state;

Pseudo code for Metropolis-Hastings Algorithm

Metropolis-Hasting Algorithm
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The chain will take some time to stabilize.  This is called 
the burn-in phase.

Burn-in !

•  Mathematical theorems guarantee 
that the Metropolis algorithm will 
asymptotically converge to the 
target distribution independently 
of its starting point. !

•  However, there will be an initial 
transient of unknown length during 
which the chain reaches its 
stationary state.!

•  In practice, you have to assume 
that after Nb iterations, the chain 
converged and started sampling 
from its target distribution.!

•  The value of Nb is called the burn-
in number.!

C. Porciani! Estimation & forecasting ! 79!

MCMC Chains
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MCMC Chains



50

CLASS

Compare with the data

Likelihood L(✓|x)

Metropolis-Hastings  
Algorithm

Input Parametersn
⌦M,⌦B,H0, As, ns, ⌧

o

Markov Chain Methodology



• Operationally, effective convergence of Markov chain 
simulation has been reached when inferences for 
quantities of interest do not depend on the starting point 
of the simulations.


• We will need to cut the burn-in phase - usually the first 
half of the chains.


• It is advisable to have many chains and make a 
comparison between them.

51

Convergence Test
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• We will need to compute the estimated mean and 
compare the variance.


• For  number of MC chains, Define between-chain 
variance as





where  is the tth of the n iteration of  in chain j. The 
variance between chains is


m

B/n =
1

m� 1

mX

j=1

�
✓̄j. � ✓̄..

�2

✓jt ✓

W =
1

m(n� 1)

mX

j=1

nX

t=1

�
✓̄jt � ✓̄j.

�2

Gelman-Rubin Convergence Test
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• We can calculate the weighted variance  as





• The Gelman-Rubin diagnostic  is a method to assess 
the convergence of MCMC chains.





• The standard convergence is when


�̂2

�̂2 =
n� 1

n
W +

B

n
.

R̂

R̂ =
m+ 1

m

�̂2

W
� n� 1

mn
.

R̂� 1 < 0.01

Gelman-Rubin Convergence Test
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• Histogram is a common way to make sense of  
discrete data

93.5, 93, 60.8, 94.5, 
82, 87.5, 91.5, 99.5, 
86, 93.5, 92.5, 78, 
76, 69, 94.5, 89.5, 
92.8, 78, 65.5, 98, 

98.5, 92.3, 95.5, 76, 
91, 95, 61.4, 96, 90

Data Histogram

Histogram
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• The same data could generate different histograms 
depending on the number of bins used.

Histogram
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• The same data can generate different histograms  
depending on the starting point of the left edge of the bins.

Histogram
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Drawbacks of Histogram

• Not smooth


• Dependence on width of the bins


• Dependence on the end points of bins

Histogram
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• If we instead replace the data point by a kernel function

Kernel Density Function
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• For simplicity suppose we have only three data points 
0, 5, 10

Kernel Density Function
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• For simplicity suppose we have only three data points 
0, 5, 10

Kernel Density Function
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• For simplicity suppose we have only three data points 
0, 5, 10

Kernel Density Function
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• With our previous data

Kernel Density Function
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• By using the kernel density function, our histogram will no 
longer depends on the width of the bins and  
the end points of the bins


• However, the distribution is still not smooth.

Kernel Density Function
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• The plot is not smooth because we use a non-smooth 
kernel function.


• We can use a smooth kernel function; for example, 
the Gaussian function.

Kernel Density Function
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• We have a smooth distribution.

Kernel Density Function
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• We oversmooth the distribution - the feature will be washed 
out.

Oversmoothed

Kernel Density Function
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• The optimal bandwidth has to be estimated


• A standard way to estimated the optimal bandwidth 
is to use Sheather-Jones estimator.

h = 1.06�̂XN�1/5

Kernel Density Estimator
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Kernel Density Estimator
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Kernel Density Estimator


