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1 Review of GR
1.1 Equivalence Principle
The equivalence principle (EP) is one of the crucial idea leading to argu-
ment why do we think the spacetime is curved as well as how to generalize
idea from SR to GR. In this lecture note, we will classified EP into two parts:
Weak Equivalence Principle (WEP) and Strong Equivalence Principle (SEP).

What is the WEP?
For the WEP, it states that ”No experiment in mechanics can distinguish
between gravitational field and an accelerating frame of reference” This idea
have a root from Galileo demonstration shown in Fig. 1. This infers that
”All body fall in the same rate in gravitational field.” Now let us do the

Figure 1: Objects with different masses are dropped to the ground at the
same time.

Galileo in a rest box influenced by gravitational field as illustrated in the left
panel of Fig. 2. Then changing the situation to a box with an acceleration
in the same magnitude of the gravitational field as shown in right panel of
Fig. 2. By mean WEP, the results of the experiment are exactly the same.
We cannot distinguish both situations by using mechanics experiments.

What is the consequence of WEP?
According to Newton’s second law, the particle of mass mi can be accelerated
by applied force as

F⃗ = mia⃗.
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Figure 2: Observers do the experiment in the boxes, then he obtains the
same result.

Note that the mass mi denotes the inertial mass of a particle. This kind of
mass play the role to resist of the moment of the particle. The more value
of mi, the more force to make its movement.

There is another kind of mass called ”gravitational mass”. It measures
the response of the particle to the gravitational field,

F⃗ = mgE⃗g = −mg∇⃗Φ.

It plays the similar role to electric charge in terms of electric force, F⃗ = qE⃗.
Therefore, mg is essentially gravitational charge. These two kinds of mass
are completely different in this sense. By using the argument from the WEP,
we then have

F⃗ = mgE⃗g = mia⃗, ⇒ mi = mg.

Sometimes, the WEP is known such that ”The inertial mass and gravitational
mass of any object are equal”.

It is important to note that EP is a local principle. To see this property,
let us consider the Einstein box, but now it is much bigger as seen in Fig.
3. From this figure, the masses are falling to the center of the Earth, then
(for the box large enough) the masses become closer as they falling. In this
case, we can distinguish between E⃗g and a⃗ so that the principle is not valid.
Actually, the principle is valid for small enough box. Note that most of grav-
itational field are not uniform so that the EP treats a gravitational field at
a single point which is equivalent to the uniform acceleration.
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Figure 3: Two masses become closer while they are falling in the large enough
box in gravitational field.

Strong Equivalence Principle
For the WEP, it concerns only for the experiments associated with mechan-
ics. It may be ask that Is it possible to use this principle to the other areas of
physics? In this consideration we will discuss on the experiments in optics.
To see this, let us consider the Einstein box with the laser attached on the
top and the receiver in the bottom as illustrated in Fig. 4.By considering
two situations, with and without acceleration. From this experiment, one
can measure the travel time for both case. By comparing these, we can find
the difference of the light wavelength since the speed of light is constant as

∆λ

λ
=

al

c2
,

where l i the height of the box. This actually is due to the Doppler shift. One
can perform the experiment in the same way but now consider the box at rest
in gravitational field. It is found that the light wavelength is also shifted in
the same way but now it is not the Doppler effect since the box is at rest. We
called this effect as gravitational red-shift. From this ons can summarize that
”No experiment in optics can distinguish between gravitational field and an
accelerating frame of reference”. Moreover, we can generalize the idea to all
area of physics and this is the statement of the SEP: ”All the law of nature are
effected in the same way by a gravitational field and a constant acceleration.”

More thought-experiment in optics
Set up the experiment in similar way but now let us attach the emitter and
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Figure 4: The laser and receiver in the Einstein box with/without gravita-
tional field.

receiver in the horizontal part as shown in Fig. 5. Using EP and this thiught-
experinent, one can see that the light travels in a curved path in gravitational
field. Note that this conclusion is also obtained from the variational princi-
ple: the light follows the path with using minimum time. In any Eucledian
space the shortest path is a straingth line, but the curved path in gravita-
tional field. This makes Einstein to obtain the idea that the gravity makes a
spacetime curved and then the light moving in such curved spacetime making
the curved path.

Figure 5: The laser and receiver attaching in horizontal part in the Einstein
box with/without gravitational field.
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In order to study the gravity, one has to study the curved spacetime.
This leads to learn a vector of tensor in curved spacetime and also how to
differentiate them. This subject is formally known as ”differential geometry”.

1.2 Spacetime curvature
1.2.1 Intrinsic and Extrinsic curvature

Physically, the curvature can be classified into two types: Intrinsic curvature
and extrinsic curvature.

2 Intrinsic curvature: a curvature measured by one in the surface itself
do not need the information from the higher dimension.

2 Extrinsic curvature: a curvature measured by one who need the infor-
mation from the higher dimension.

Figure 6: Show how cylinder, sphere and saddle differ in terms of curvature.

Example
1. Cylinder (see the left figure of Fig. 6): In 2 dimensions, it is flat.

However, its shape is curved in 3 dimensions. We need the information from
3 dimension in order to identify the curve of cylinder ⇒ Extrinsic curvature.
If we unfold the cylinder into 2D, it will look flat paper. In other words, if
we write down the circle on the cylinder, it can be put in the flat completely
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or the area is still be the same A = πr2 as illustrated in the left panel of Fig.
6. In this case, the cylinder is intrinsically flat.

2. Sphere (see the middle figure of Fig6): ⇒ From the middle panel, one
can see that the circle on the sphere cannot be put in the flat completely
or the area is less than the usual one A < πr2. This object is intrinsically
curved.

3. Saddle (see the right figure of Fig6): ⇒ From the right panel, one can
see that the circle on the saddle cannot be put in the flat completely or the
area is greater than the usual one A > πr2. This object is also intrinsically
curved.

Let us consider how to defined curvature in mathematical point of view.
In order to define the curve properly, one can take a vector in close path. If
the vector become exactly the same at the same point, the surface we take
such the vector is called flat. If the vector is not the same, the surface is
curved.

2 Flat: From Fig. 7, one can see that after we take the vector to the

Figure 7: Taking round trip of the vector on flat surface, and then we will
found that the vector becomes the same at the same point.

closed path, the vector will be the same. The surface is called flat in this
case.

2 Sphere (example of curve): From Fig. 8, We move the vector along
A → B → C → D → A. It is found that we do not obtain the same vector
V⃗i = V⃗f ̸= V⃗i. →. It is the curved surface.
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Figure 8: Taking round trip of the vector on flat surface, and then we will
found that the vector is not the same.

1.2.2 Vector in curved space

From the previous section, in order to proper deal with spacetime curvature,
we have to define the vector on the surface. However, we need to firstly define
the mathematical object referred to the curved surface. Mathematically, such
an object is called manifold. Conceptually, the manifold is mathematical ob-
ject which is smooth and locally flat. The locally flat property is compatible
to the notion obtained in EP. This allows us to connect the vector defined
in flat space to curved manifold. For rigorously speaking, the definition of
manifold is any set that can be continuously parameterized (We would not
consider more detail about this definition).

Now let us move to consider the vector. Recall the 3-vector, it can be
written in terms of basis and components as follows

V⃗ = Vxî+ Vy ĵ + Vkk̂, (1)
= Vre⃗r + Vrθe⃗θ + Vϕe⃗ϕ, (2)
= V ie⃗i. (3)

For four dimensional spacetime (in SR), it can be promoted to a vector in
n-dimensional manifold as

V = V µe⃗µ, (4)

where µ runs over 0, 1, 2, 3.
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Figure 9: A curve on the manifold M parametrized by λ with assignment of
coordinates xµ(λ) at a particular point

2 For a manifold M, the curve on the manifold can be parametrized by a
parameter λ.
2 A point on the curve can be assigned by the local coordinates xµ(λ) as
shown in Fig. 9.
2 Supposed f(xµ) is a function on manifold (Mapping from M to R), then
we can write

f (xµ(λ)) = g(λ) ∈ R. (5)

The differential of the function along the curve can be written as

d
dλg(λ) =

∂f

∂xµ

∂xµ

∂λ
. (6)

As a result, one can write the object in similar form of vector in flat space as

d
dλ =

∂xµ

∂λ

∂

∂xµ
=

∂xµ

∂λ
∂µ, (7)

where
d

dλ is a vector, ∂xµ

∂λ
is a component of vector, ∂µ is a basis of vector. (8)

Note that since d
dλ varies with point in manifold, it plays the role of vector

field. Note also that there other non-coordinate basis but we do not consider
in this lecture. In this lecture, we restrict our attention on the coordinate
basis.
2 Tangent space
Vector defined at point p lie in the tangent space denoted by Tp. At point
p, there are actually many curves and then the plane tangent to the surface
at this point is visualized as Tp as shown in Fig 10. In other words, Tp

is obtained by taking all possible curves passing point p. Note that vector
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Figure 10: Tangent space

defined at two different points (different Tp) have no relation to each other.
This is a crucial property of the vector on manifold which significantly differs
from one in flat space.
2 General coordinate transformation
In SR, the vector is constructed under the Lorentz transformation. It is valid
only in flat spacetime (Minkowski spacetime). This is just a local frame of
the curved manifold. For GR, we need to generalize the transformation to
cover the whole manifold. In this sense, we introduce the general coordinate
transformation (GCT) as

xµ → x′µ(x). (9)

Now let us consider how the component of the vector change under GCT

∂µf(x) = ∂µf(x
′(x)),

=
∂f

∂x′ν
∂x′ν

∂xµ
,

=
∂x′ν

∂xµ
∂′
νf. (10)

Then, we obtain the transformation of the basis as follows

∂µ =
∂x′ν

∂xµ
∂′
ν , or e⃗µ =

∂x′ν

∂xµ
e⃗ ′
ν , (11)

where ∂x′ν

∂xµ is GCT matrix. For the case of the matrix is invertible, we can
write

∂′
ν =

∂xµ

∂x′ν ∂µ, or e⃗ ′
ν =

∂xµ

∂x′ν e⃗µ. (12)

with the property

∂x′µ

∂xρ

∂xρ

∂x′ν =
∂xµ

∂x′ρ
∂x′ρ

∂xν
= δµν (13)
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As a result, the vector, V under GCT can be rewritten as

V⃗ = V µe⃗µ,

= V µ

(
∂x′ν

∂xµ
e⃗ ′
ν

)
,

In order to obtain that the vector is unchanged (V⃗ = V µe⃗µ = V ′ν e⃗ ′
ν = V⃗ ′),

the component must be transformed as

V ′ν =
∂x′ν

∂xµ
V µ. (14)

Note that the Lorentz transformation is a special case of GCT.

Λµ
ν =

∂x′ν

∂xµ
. (15)

2 Dual vector
There exist other object on manifold called ”dual vector”. To visualize this
kind of vector, let us consider the infinitesimal transformation of coordinate,
x → x+ dx. For any function f = f(x) on manifold, it is changed as

df =
∂f

∂xµ
dxµ (16)

By comparing to the usual form of vector, we have

df is a dual vector,
∂f

∂xµ
is a component of dual vector,

dxµ is a basis of dual vector.

Mathematically, the dual vector is a map of the vector to R. In the same
fashion as vector, V⃗ defined in Tp, the dual vector w⃗ is defined in T ∗

p (called
dual tangent space or cotangent space). By choosing f being the new coordi-
nate, x′µ, we obtain the transformation rule of the coordinate of dual vector
as

dx′ν =
∂x′ν

∂xµ
dxµ. (17)

Similar to a vector, the component of dual vector should be transform

w′
ν =

∂xµ

∂x′νwµ, (18)
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in order to obtain the invariant dual vector under GCT, w = wµdxµ =
w′

µdx′µ = w ′.
2 Tensor
Tensor is an object which combines the description of both dual vector and
vector. More precisely, object which has components such that the Cartesian
product of ”r” basis vector and ”s” basis of dual vector. Therefore, rank (r, s)
tensor can be defined

T = T µ1···µr
ν1···νs ∂µ1 ⊗ · · · ⊗ ∂µr ⊗ dxν1 ⊗ · · · ⊗ dxνs , (19)

The transformation rule can be written as

T ′µ1···µr
ν1···νs =

∂x′µ
1

∂xρ
1

· · · ∂x
′µ
r

∂xρ
r

∂xσ
1

∂x′ν
1

· · · ∂x
σ
s

∂x′ν
s

T ρ1···ρr
σ1···σs

(20)

Notation Convention

T µ1···µr−1ρ
ν1···νs−1ρ

: (r − 1, s− 1) tensor, (21)

T (µ1···µr)
ν1···νs =

1

r!
(Sum over all permutation), (22)

T µ1···µr

[ν1···νs] =
1

s!
(Alternative sum over all permutation). (23)

e.g.

T (ρσ)
µ =

1

2

(
T ρσ

µ + T σρ
µ

)
, (24)

T ρ
[µν] =

1

2

(
T ρ

µν − T ρ
νµ

)
. (25)

It is important to note that, if the exist the metric tensor gµν on the man-
ifold, it is called Riemanian manifold. From SR, the spacetime is a kind of
rigid body and the metric tensor ηµν is somehow fixed. However, as we have
mentioned, the spacetime is a kind of flexible object in GR view point. Physi-
cally, the metric tensor is the object characterized the flexibility of spacetime.
Therefore, the curvature of the spacetime will be related to the property of
the metric tensor. We will see later on this issue.

Note that we will use gµν for curved spacetime, while the flat Minkowski
spacetime is dented by ηµν . As a result, the tranformation for the metric
tensor can be gneralized as

η′µν = Λρ
µΛ

σ
νηρσ ⇒ g′µν =

∂xρ

∂x′µ
∂xσ

∂x′ν gρσ. (26)

The other properties such as dot product of vectors, raise or lower indecies
still be the same.
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1.2.3 Covariant derivatives

In order to find the proper derivatives on curved spacetime, let consider the
transformation of the derivative of V µ,

∂ ′
µV

′ν =
∂

∂x′µV
′ν ,

=

(
∂xρ

∂x′µ
∂

∂xρ

)(
∂x′ν

∂xσ
V σ

)
,

=
∂xρ

∂x′µ
∂x′ν

∂xσ

∂

∂xρ
V σ +

∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
V σ,

=
∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
V σ. (27)

We see that ∂µV ν does not transform like a (1,1) tensor (because there exists
the exceed term, ∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσV
σ in the above equation). This is due to the

differentiation of a vector in this manner defined by comparing two vectors in
different tangent space. In this sense, the normal derivative can be performed
only in the flat spacetime of comparing V i(xj) and V i(xj + dxj) = V i + dV i

(see Fig. 11) as follows

Figure 11: In 3D, two vectors in different points can be compared only in
flat space

∂V i

∂xj
= lim

dxj→0

V i(xj + dxj)− V i(xj)

dxj
. (28)

According to the curved spacetime, one has to compare two vectors in the
same point (same tangent space). Therefore, we have to move the vector
to the same point. Let denote the vector resulting from this transport as
V µ(xν) + δV µ as shown in Fig. 12.

Thus the genuine derivative should be constructed from the difference
between V µ(xν) + δV µ and V µ(xν) + dV µ as

DV µ = (V µ(xν) + dV µ)− (V µ(xν) + δV µ) = dV µ − δV µ. (29)
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Figure 12: Two vectors in different points can be compared in curved space-
time, if we move one of them to the same point.

Since δV µ is obtained by parallel transport of vector V ρ, it should be depend
on the vector V ρ itself. Moreover, it is in the same tangent vector of dV σ so
that it has to proportional to dxσ. As a result we have,

δV µ ∝ V ρdxσ → δV µ = −Γµ
ρσV

ρdxσ, (30)

where, Γµ
ρσ is the connection coefficient. Considering derivative (29) along

the curve parametrized by a parameter λ, it reads

DV µ

dλ =
dV µ

dλ − δV µ

dλ ,

=
dxσ

dλ
∂V µ

∂xσ
+ Γµ

ρσV
ρdxσ

dλ ,

dxσ

dλ ∇σV
µ =

(
∂V µ

∂xσ
+ Γµ

ρσV
ρ

)
dxσ

dλ . (31)

Then the component of the covariant derivative of vector V µ can be written
as

∇σV
µ = ∂σV

µ + Γµ
ρσV

ρ. (32)

For the dual vector one can find the covariant derivative from the fact that
scalar quantity does not change under the transport,

∇σ(V
µWµ) = 0. (33)

Exercise show that the component of covariant derivative of the dual vector
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can be written as

∇σWµ = ∂σWµ − Γρ
σµWρ. (34)

Generally, one can find the covariant derivative of the tensor as

∇ρT
µ1···µp

ν1···νq = ∂ρT
µ1···µp

ν1···νq +

p∑
i=1

Γµi
ρσT

µ1···µi−1σµi+1···µp
ν1···νq

−
q∑

i=1

Γσ
ρνi

T µ1···µp
ν1···νi−1σνi+1···νq . (35)

Exercise Show that the connection, Γρ
µν transforms as the transformation rule

Γ′ρ
µν =

∂x′ρ

∂xσ

∂xα

∂x′µ
∂xβ

∂x′ν Γ
σ
αβ +

∂x′ρ

∂xσ

∂2xσ

∂x′µ∂x′ν . (36)

One found that Γρ
µν does not transform as tensor. However, Γρ

µν −Γρ
νµ trans-

forms as tensor. Therefore it is possible the define the torsion tensor as

T ρ
µν = Γρ

µν − Γρ
νµ (37)

Note that the torsion is a resulting from the round trip transport of the scalar
function T ρ

µν ∝ [∇µ,∇ν ]f . In GR, we consider only the torsion-free space-
time T ρ

µν = 0. In principle, Γρ
µν does not depend on the metric tensor gµν . It

is a structure we introduce to the manifold like gµν . However, if we impose
the metric compatibility ∇ρgµν = 0, it will depend on the metric tensor can
called the Christoffel symbol.

Exercise By using the metric compatibility ∇ρgµν = 0, show that

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (38)

Exercise Show that

∇µV
µ =

1√
−g

∂µ
(√

−gV µ
)
. (39)

1.2.4 Parallel transport and geodesic equation

Considering directional derivative along a vector U⃗ , it reads

DV ν

dλ

∣∣∣
U
= Uµ∇µV

ν . (40)
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Now let us specify the direction of the derivetives along the tangent vector
(U → t),

D V ν

dλ

∣∣∣
t

= tµ∇µV
ν , (41)

=
dxµ

dλ
∇µV

ν . (42)

From this equation, one can see that it imples the transport of the vector a
curve parametrized by λ. If we want to keep the vector constant along the
path, the covariant derivative of the vector shoould not be changed. In this
sense, one can define the parallel transport as

DV ν

dλ

∣∣∣
t
= tµ∇µV

ν = 0. (43)

The properties of parallel transport can be listed as

→ D
dλT

µ1···µp
ν1···νq = tµ∇µT

µ1···µp
ν1···νq = 0. (44)

→ D
dλ(gµνV

µW ν) = 0. (45)

(Check :��������:0D
dλgµνV

µW ν + gµν
�

�
��
0

DV µ

dλ W ν + gµνV
µ

�
�
���

0
DW ν

dλ = 0).

→ If C(λ) is an arbitrary curve, the tangent vectors are not parallel-transported
into the tangent vectors. (46)

Figure 13: There exists a special subset of all arbitrary curves to satisfy the
tangent vectors are parallel-transported into the tangent vectors

There exists a special subset of all arbitrary curves to satisfy the tangent
vectors are parallel-transported into the tangent vectors. This curve is called
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”geodesic path” or auto-parallel curve as shown in Fig 13. From the condition
for parallel transport,

tµ∇µt
ρ = 0,(

dxµ

dλ

)(
∂µt

ρ + Γρ
µνtν

)
= 0,

dtρ
dλ + Γρ

µνtµtν = 0,

d2xρ

dλ2
+ Γρ

µν

dxµ

dλ
dxµ

dλ = 0. (47)

This is called geodesic equation. The parameter, λ satisfying the geodesic
equation is called affine parameter. In the other word,

Parallel transport of V µ along geodesic path.
⇓

Moving vector by fixing direction and magnitude.

It is important to note that the geodesic equation can be derived from
the variational principle. Generally, it can be written as

ẍρ + Γρ
µν ẋ

µẋν = f(λ)ẋρ, (48)

From this equation, it infers that the geodesic equation can be obtained from
the notion of the parallel transport by fixing only the direction of the vector
V µ, (not fixing the magnitude). However, this is still equivalent since we can
find other proper affine parameter λ.
Exercise Show that, it is possible to find the other affine parameter to obtain
the usual geodesic equation.

1.2.5 Curvature tensor

As we have mentioned before, in order to find the intrinsic curvature, we
have to move the vector in closed path. In this sense, it is natural to use the
parallel transport to move the vector. Therefore, in this subsection, we will
find the spacetime curvature by performing the parallel transport of a vector
along the closed path as shown in Fig. 14.

It is found that, in general, the change of vector is

δV ρ = −Γρ
µσV

σdxµ. (49)
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Figure 14: Round trip parallel transport of a vector

According to the above figure, we have

∆ρ
1 = V ρ

i (B)− V ρ
i (A) = −

∫
xν=0

Γρ
µσV

σdxµ, (50)

∆ρ
2 = V ρ

i (C)− V ρ
i (B) = −

∫
xν=δbν

Γρ
µσV

σdxµ, (51)

∆ρ
3 = V ρ

i (D)− V ρ
i (C) =

∫
xµ=δaµ

Γρ
µσV

σdxµ, (52)

∆ρ
4 = V ρ

i (A)− V ρ
i (D) =

∫
xµ=0

Γρ
µσV

σdxµ. (53)

Then

∆ρ
1 +∆ρ

3 =

(∫
xν=δaν

−
∫
xν=0

)
Γρ
µσV

σdxµ,

≈ δaν
∫

∂ν
(
Γρ
µσV

σ
)

dxµ,

≈ δaνδbµ∂ν
(
Γρ
µσV

σ
)
. (54)
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and

∆ρ
2 +∆ρ

4 =

(
−
∫
xµ=δbµ

+

∫
xµ=0

)
Γρ
µσV

σdxµ,

≈ −δbµ
∫

∂µ (Γ
ρ
νσV

σ) dxν ,

≈ −δbµδaν∂µ (Γ
ρ
νσV

σ) . (55)

The whole parallel transportation can be written as

∆ρ =
∑
i

δρi ,

≈ δaνδbµ
[(
∂νΓ

ρ
µσ − ∂µΓ

ρ
νσ

)
V σ + Γρ

νσ∂µV
σ − Γρ

µσ∂νV
σ
]
,

= δaνδbµ
[(
∂νΓ

ρ
µσ − ∂µΓ

ρ
νσ

)
V σ + Γρ

νσΓ
σ
µλV

λ − Γρ
µσΓ

σ
νλV

λ
]
,

= δaνδbµ
(
∂νΓ

ρ
µσ − ∂µΓ

ρ
νσ + Γρ

νλΓ
λ
µσ − Γρ

µλΓ
λ
νσ

)
V σ,

= δaνδbµRρ
σνµV

σ. (56)

where the tensor Rρ
σνµ ≡ ∂νΓ

ρ
µσ−∂µΓ

ρ
νσ+Γρ

νλΓ
λ
µσ−Γρ

µλΓ
λ
νσ called Riemannian

tensor which describes how the manifold curves.
Next we will discuss the alternative approach to define the Riemannian

tensor. Let us consider the parallel transportation of vector along different
2 paths in which the starting and ending points are the same as seen in Fig.
15.

Figure 15: Other way to obtain the curvature tensor

The difference of parallel transported vectors along path 1 and path 2
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can be written as

(∇µ∇ν −∇ν∇µ)V
ρ = ∂µ (∇νV

ρ)− Γσ
µν∇σV

ρ + Γρ
µσ∇νV

σ − ∂ν (∇µV
ρ) + Γσ

νµ∇σV
ρ − Γρ

νσ∇µV
σ,

= ∂µ
(
���∂νV

ρ + Γρ
νγV

γ
)
− ∂ν

(
���∂µV

ρ + Γρ
µγV

γ
)

+Γρ
µσ

(
∂νV

σ + Γσ
νγV

γ
)
− Γρ

νσ

(
∂µV

σ + Γσ
µγV

γ
)
−
(
Γσ
µν − Γσ

νµ

)
∇σV

ρ,

= ∂µΓ
ρ
νγV

γ +�����Γρ
νγ∂µV

γ − ∂νΓ
ρ
µγV

γ −XXXXXΓρ
µγ∂νV

γ

+Γρ
µσ

(XXX∂νV
σ + Γσ

νγV
γ
)
− Γρ

νσ

(
���∂µV

σ + Γσ
µγV

γ
)
−
(
Γσ
µν − Γσ

νµ

)
∇σV

ρ,

=
(
∂µΓ

ρ
νγ − ∂νΓ

ρ
µγ + Γρ

µσΓ
σ
νγ − Γρ

νσΓ
σ
µγ

)
V γ − 2Γσ

[µν]∇σV
ρ,

= Rρ
γµνV

γ − 2Γσ
[µν]∇σV

ρ. (57)

Notice that this difference between 2 vectors is considered in the spacetime
with torsion because the term Γσ

[µν] does not vanish. Hence, for torsionless
spacetime, we also have

(∇µ∇ν −∇ν∇µ) (V
ρWρ)

{
= 0, for torsionless spacetime,
̸= 0, for spacetime with torsion. (58)

Next, we will consider in the torsionless spacetime. Let us first define

Oµν ≡ ∇µ∇ν −∇ν∇µ. (59)

From (1.2.5), we can write

OµνV
ρWρ + V ρOµνWρ = 0,

V ρOµνWρ = −Rρ
γµνV

γWρ. (60)

The difference of dual vector parallel transported along paths gives us

OµνWρ = −Rγ
ρµνWγ. (61)

In general, for any (p, q) tensor, we have

OµνT
µ1···µp

ν1···νq = Rµ1
γµνT

γµ2···µp
ν1···νq + · · ·+Rµi

γµνT
µ1···µi−1γµi+1···µp

ν1···νq + · · ·+Rµp
γµνT

µ1···µp−1γ
ν1···νq

−Rγ
ν1µν

T µ1···µp
γν2···νq − · · · − Rγ

νiµν
T µ1···µp

ν1···νi−1γνi+1νq
− · · · − Rγ

νqµνT
µ1···µp

ν1···νq−1γ
.

(62)

1.2.6 Properties of Riemann tensor

From the definition of Riemanian tensor,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (63)
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Contracting with gγρ,

gγρR
ρ
σµν = Rγσµν = gγρ∂µΓ

ρ
νσ − gγρ∂νΓ

ρ
µσ + gγρΓ

ρ
µλΓ

λ
νσ − gγρΓ

ρ
νλΓ

λ
µσ,

= ∂µ(gγρΓ
ρ
νσ)− ∂µgγρΓ

ρ
νσ − ∂ν(gγρΓ

ρ
µσ) + ∂νgγρΓ

ρ
µσ + gγρΓ

ρ
µλΓ

λ
νσ − gγρΓ

ρ
νλΓ

λ
µσ,

(64)

Choosing to consider in geodesic coordinate (Γρ
µν = 0, but ∂σΓ

ρ
µν ̸= 0), we

can write

Rγσµν = ∂µ(gγρΓ
ρ
νσ)− ∂ν(gγρΓ

ρ
µσ),

=
1

2
∂µ

[
gγρg

ρλ (���∂νgσλ + ∂σgνλ − ∂λgνσ)
]
− 1

2
∂ν

[
gγρg

ρλ
(
����∂µgσλ + ∂σgµλ − ∂λgµσ

)]
=

1

2
(∂µ∂σgγν − ∂µ∂γgσν + ∂ν∂γgσµ − ∂ν∂σgγµ) . (65)

It is easily to see that

Rγσµν = −Rγσνµ, (66)
Rγσµν = −Rσγµν , (67)
Rγσµν = Rµνγσ. (68)

These properties are not only exist in the geodesic coordinates, but there are
also in all coordinates.

Let consider

d⃗w⃗1 = ∇[νaρ] θ⃗ν ∧ θ⃗ρ, (69)
d⃗2w⃗1 = ∇[µ∇νaρ] θ⃗µ ∧ θ⃗ν ∧ θ⃗ρ = 0. (70)

Since the basis does not vanish, the components are

0 = ∇[µ∇νaρ],

=
1

2

(
∇[µ∇νaρ] −∇[ν∇µaρ]

)
,

=
1

2
Rγ

[ρµν]aγ. (71)

We obtain another properties of Rimannian tensor

Rγ
[σµν] = 0. (72)

It can be alternatively written as

R[γσµν] = 0. (73)

22



Lecturenote for Cosmology with Computations Workshop 2024
(CosCOM2024) Pitayuth Wongjun

Eventually, we have 4 independent properties which are (66)-(68) and (72)(or
(73)).

Counting degrees of freedom
In n-dimensional spacetime, from the property in (68), we can consider the
Riemannian tensor as the 2-rank tensor,

Rγσµν = Tab, (74)

where the new indices are defined as the pair of the old ones, a ≡ γσ and
b ≡ µν. Suppose that each a and b contains m degrees of freedom. Since Tab

is symmetric, the number of degrees of freedom is m(m+ 1)/2.
From the properties in (66) and (67), it is anti-symmetric for each pair

γσ and µν. Thus a and b contain n(n − 1)/2 degrees of freedom. Then the
properties (66)-(68) give us that

# of d.o.f of Rγσµν

∣∣∣
using (66)−(68)

=

(
n(n−1)

2

)(
n(n−1)

2
+ 1

)
2

. (75)

However, there is 1 property left which is (72) or (73). We choose to use
(73). It is found that (73) will eliminate n(n− 1)(n− 2)(n− 3)/4! degrees of
freedom. Thus we have

# of d.o.f of Rγσµν =

(
n(n−1)

2

)(
n(n−1)

2
+ 1

)
2

− n(n− 1)(n− 2)(n− 3)

4!
,

=
n(n− 1)

24
[3n(n− 1) + 6− (n− 2)(n− 3)] ,

=
n(n− 1)

24
(2n2 + 2n),

=
1

12
n2(n− 1)(n+ 1). (76)

We can see that there are 20 degrees of freedom for 4-dimensional spacetime.
Notice that the number of degrees of freedom in 1 dimension is zero. This
means that there is no curvature in 1 dimension. We need information in
higher dimension in order to identify the line in 1 dimension is straight or
curved.

Bianchi Identity
Considering

O[µν∇ρ]Wσ = −���
= 0 by (72)

Rλ
[ρµν]∇λWσ −Rλ

σ[µν∇ρ]Wλ (77)
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and
∇[ρOµν]Wσ = −∇[ρ

(
Rλ

|σ|µν]Wλ

)
,

= −∇[ρR
λ
|σ|µν]Wλ −Rλ

σ[µν∇ρ]Wλ. (78)

In order to obtain (77) = (78), the term ∇[ρR
λ
|σ|µν]Wλ must be zero. Then

∇[ρR|λσ|µν]W
λ = 0, (79)

or
∇[ρR|λσ|µν] = 0,

∇[ρRµν]λσ = 0, (80)
which is called Bianchi identity.

Ricci tensor
In order to Rγ

γµν = 0
Ricci tensor

Rγ
µγν = Rµν (81)

Ricci scalar
Ricci scalar

R = gµνRµν . (82)

Einstein tensor
Contracting (80) with gρλgµσ,

gρλgµσ∇[ρRµν]λσ = gρλgµσ
1

3
(∇ρRµνλσ +∇µRνρλσ +∇νRρµλσ) ,

0 =
1

3

[
∇λ(−Rνλ) +∇σ(−Rνσ) +∇νR

]
,

= −2

3
∇µ

(
Rνµ −

1

2
gνµR

)
,

= −2

3
∇µGνµ. (83)

The tensor Gµν ≡ Rµν − 1
2
gµνR is called the Einstein tensor. Note that

this tensor is divergence-less, ∇µGµν = 0 corresponding to the behaviour of
matter which obeys the law of conservation of energy. Hence the Einstein
tensor is useful to explain the curvature of spacetime due to the existence of
matter as we will discuss later.
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1.3 Energy momentum tensor
1.3.1 Individual particle

A 4-momentum P µ can be used to provide a complete description of energy
and momentum of a particle, so that the dynamics of the particle can be
described. From SR, the 4-momentum P µ can be written in terms of 4-
velocity V µas

P µ = mV µ, (84)
where m is a rest mass of the particle. The 4-velocity can be defined as

V µ =
dxµ

dτ
, (85)

where τ is the proper time and the 4-velocity obeys the normalization
VµV

µ = −1. (86)
The 4-velocity can be thought as a tangent vector along the timelike world-
line. Note that, the rest frame of the particle, the 4-velocity can be written
as V µ = (1, 0, 0, 0).

1.3.2 System of particles

Rather than specify the individual 4-momentum of all particles, we instead
describe the system by a ”fluid”. To specify the fluid, one may need to know
the the macroscopic quantities such as density, pressure, entropy, viscosity
and so no. Therefore, the single 4-momentum of the fluid is not sufficient
to describe the fluid. We can go further to describe the fluid by using the
symmetric (2,0) tensor called ”Energy Momentum Tensor” (EMT), T µν . A
general definition of EMT is the flux of 4-momentum, P µ across a surface of
constant xν . In order to explore the physical meaning of each components
of energy momentum tensor , let us consider the infinitesimal element of the
fluid in its rest frame with a volume V .

• T 00: flux of p0 (energy) in x0 (time) → ”energy density”.

• T 0i = T i0: flux of pi (momentum) in x0 (time) → ”momentum density”.

• T ij(i = j): flux of pi (momentum) in xj → This represents the transfer
momentum of element in i direction into j direction corresponding to
the force per unit volume in i direction acting on the plane with xj =
constant. Therefore, for i = j, this corresponds to the ”pressure”

• T ij(i ̸= j): As the same strategy, for i ̸= j, this corresponds to the
”shear” due to viscosity of the fluid.
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1.3.3 Simple and useful example (dust)

Dust is a system of particles which are at rest with respect to each other. The
4-velocity of the fluid is the same as all particles. The number-flux 4-vector
can be defined as

Nµ = nV µ, (87)

where, n is number density of particles measured in their rest frame. Suppose
that the particle s have the same mass m, the energy density at the rest frame
can be written as

ρ0 = mn, (88)

In the rest frame, one can write Nµ and pµ as Nµ = (n, 0, 0, 0) and pµ =
(m, 0, 0, 0), so that the ENT of dust can be written as

T µν
(dust) = pµN ν = mnUµU ν = ρ0U

µU ν . (89)

1.3.4 Conservation of EMT (dust)

To see clearly how EMT conserves, let us consider Minkowski spacetime
gµν = ηµν . As a result, the conservation equation can be written as

∂µT
µν = 0. (90)

From exercise, the EMT in moving frame can be written as T 00 = ρ, T 0i =
ρvi, T ij = ρvivj, where ρ = ρ0γ

2 and γ = (1− v2)−1/2.

• zero component:

∂µT
µ0 = ∂0T

00 + ∂iT
i0,

= ∂tρ+ ∂i(ρv
i),

= ∂tρ+ ∇⃗(ρv⃗) = 0. (91)

This corresponds to the conservation of energy/mass. To see more
clearly, let consider the familiar one which is the moving charge with
charge density ρ. The total charge and the current density can be
written respectively as

Q =

∫
ρdV, (92)

J⃗ = ρv⃗. (93)
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During time δt, the change of the charges enclosed by the surface A
can be written as

δQ1 =
∂Q

∂t
δt =

∫ (
∂ρ

∂t
dV

)
δt. (94)

The charges escaping through the surface can be written as

δQ2 =

(∮
J⃗ · da⃗

)
δt =

(∫
∇⃗ · J⃗dV

)
δt, (95)

where we have used divergence theorem. The charges must be con-
served, δQ1 + δQ2 = 0. As a result, we have

∂ρ

∂t
+ ∇⃗ · J⃗ = 0,

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0. (96)

Comparing to our case, it implies that the equation belongs to the
conservation of mass/energy.

• i component:

∂µT
µi = ∂0T

0i + ∂jT
ji,

= ∂t(ρv
i) + ∂j(ρv

jvi) = 0. (97)

This equation is also in the same form as the previous one so that it
corresponds to the conservation equation as well.

As a result, one find that ∂µT
µν = 0 is the conservation equation of EMT

in flat Minkowski. One can generalize this equation to one in the curved
spacetime by replacing ∂µ by ∇µ

∇µT
µν = 0. (98)

1.3.5 Newtonian limit

One of important conditions to construct the Einstein equation is that the
equation must be reduced to Newtonian theory. Such the conditions are
following: 1) A particle must move slowly comparable to the speed of light.
2) the gravitational field should be weak. This condition allows us to use the
perturbation method to perform calculation, gµν = ηµν +hµν where hµν ≪ 1.
Another condition is the gravitational field must be static. This condition is
imposed since it provides easy way to compare to the Newtonian theory.
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In Newtonian theory for the central force, the gravitational field can be
written as

E⃗g = −∇⃗Φ, Φ = −GM

r
, (99)

where Φ is the gravitational potential.
Now let us consider equation in Einstein theory. As we have known,

the equation that explain how particle moves due to the curvature of the
spacetime is the geodesic equation

d2xµ

dτ 2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0, (100)

where Γµ
νρ are components of affine connection. From the first condition,

”moving slowly”, one can use the approximation as follows

t ≈ τ,
dx0

dτ
≈ 1,

dxi

dτ
≪ 1 ≈ 0. (101)

Applying this condition to the geodesic equation, one has

d2xµ

dτ 2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0,

d2xµ

dt2
+ Γµ

00

dx0

dt

dx0

dt
= 0,

d2xµ

dt2
+ Γµ

00 = 0. (102)

Let us consider the connection by applying the second condition, ”weak field
limit” and also the static one, ∂0gµν = 0, one obtains

Γµ
ρσ =

1

2
gµν (∂ρgνσ + ∂σgνρ − ∂νgρσ) , (103)

Γµ
00 =

1

2
gµν (∂0gν0 + ∂σgν0 − ∂νg00) ,

Γµ
00 = −1

2
ηµν∂νh00,

Γi
00 = −1

2
ηij∂jh00. (104)

Substituting this connection into Eq. (102), the geodesic equation in New-
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tonian limit can be written as
d2xµ

dt2
+ Γµ

00 = 0,

d2xi

dt2
− 1

2
δij∂jh00 = 0,

d2xi

dt2
− 1

2
∂ih00 = 0,

E⃗g =
1

2
∇⃗h00. (105)

By comparing the gravitational field in Eq. (105) from Einstein theory and
one in Eq. (99) from Newtonian theory, one obtains

h00 = −2Φ =
2GM

r
→ g00 = −

(
1− 2GM

r

)
. (106)

1.4 Einstein equation
In order to construct the equation for describing the relation between mat-
ter/energy and spacetime curvature, one has impose two requirements such
that

• The equation must be reduced to Newtonian theory.

• The curvature part must contain the metric tensor gµν and its deriva-
tives such as Γρ

µν , R
ρ
µσν , Rµν and R while the matter/enegy should be

proportional to the EMT Tµν .

From the first requirement, the important equation in Newtonian theory in
the Poisson equation ∇2Φ = 4πGρ. As we discussed before, the component
of the metric tensor is proportional to the gravitational potential g00 ∝ Φ.
Therefore, in order to reduce the master equation into the Poisson equa-
tion, the curvature part must be proportional to the second derivative of the
metric. These quantities are Rρ

µσν , Rµν and R.

1.4.1 Vacuum equation

For the vacuum equation, the matter/energy part vanishes and then the
curvature part will be vanished

f(Rρ
µσν , Rµν , R) = 0. (107)

One may firstly guess for this equation such that

Rρ
µσν = 0 (?). (108)
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However, one found that this may not be possible since this equation provides
the flat spacetime nearby the massive source. So that we can make a further
guess by

Rµν = 0 (?). (109)

This is a good choice since the Ricci tensor has ten dof. like the metric
tensor, hoping that ten dof. of the metric transfer to ten dof. of Ricci tensor
through their second derivatives making from source nearby.

1.4.2 Equation with source

Now let us consider the equation with source. By adding the EMT, the
equation may be written as

Rµν = kTµν (?), (110)

where k is the proportional constant. This still be the good choice since
the index symmetry also satisfy. However, as we discussed before, the EMT
obeys the conservation equation ∇µT

µν = 0 while the Ricci tensor does not
satisfy in general. As a result, one may find other quantities to satisfy this
condition as well as maintain the mentioned requirements. Fortunately, from
the Bianchi indentity, ∇[λRρσ]µν = 0, it serve us the conservation quantity as
follows

∇µGµν = 0, Gµν = Rµν −
1

2
Rgµν , (111)

where Gµν is called Einstein tensor. Note that the derivation of ∇µGµν = 0.
As a result, the equation can be constructed as

Gµν = kTµν . (112)

Next task for this construction is that we have to find the proportional
constant k as well as check whether this equation satisfies the vacuum equa-
tion or not. To perform this evaluation, let us take the trace of the above
equation as follows

R− 1

2
(4)R = kT,

R = −kT (113)

Substituting R from this equation into Eq. (112), one obtains

Rµν +
1

2
kTgµν = kTµν ,

Rµν = k

(
Tµν −

1

2
Tgµν

)
. (114)
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From this equation, one can see that the vacuum equation still be satisfied
where the source is eliminated, Tµν = T = 0.

Now, we will find the proportional constant by taking the Newtonian
limit into Eq. (114). As a result, the EMT can be written as

T µν = ρ


1 v1 v2 v3

v1 v1v1 v1v2 v1v3

v2 v2v1 v2v2 v2v3

v3 v3v1 v3v2 v3v3

 ∼ ρ


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (115)

Then we have

T µν − 1

2
Tgµν =

1

2
ρ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =
1

2
ρδµν ,

Tµν −
1

2
Tgµν =

1

2
ρδµν . (116)

Now let us consider the left hand side of Eq. (114),

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γλ

µνΓ
ρ
λρ − Γλ

µρΓ
ρ
λν . (117)

By using the weak field limit gµν = ηµν + hµν and then keeping only first
order perturbations, one obtains

Rµν =
1

2
ηρσ (∂ρ∂µhνσ + ∂ρ∂νhµσ − ∂ρ∂σhµν − ∂ν∂µhρσ) . (118)

Exercise: Show that by using the weak field limit gµν = ηµν + hµν and
then keeping only first order perturbations, the Ricci tensor can be written
as the above equation.

Imposing the static condition ∂0hµν = 0, the component R00 can be writ-
ten as

R00 = −1

2
ηij∂i∂jh00 = −1

2
∇2h00 = ∇2Φ, (119)

where we have used Eq. (106). Substituting results into Eq. (114), one
obtains

∇2Φ =
1

2
kρ. (120)
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By comparing this equation to the Poisson equation ∇2Φ = 4πGρ, the con-
stant k can be written as

k = 8πG. (121)

Finally, the Einstein equation is completely constructed as

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (122)

1.5 Lagrangian Formulation for General Relativity
There are various advantage points for Lagrangian formulation in field the-
ories.

• Most of physical theories can be expressed in terms of Lagrangian for-
mulation in which the equations of motion can be obtained by varia-
tional principle. Therefore, it is worthwhile to find Lagrangian formu-
lation for General Relativity.

• It is convenient to identify the conserved quantities of the system from
Lagrangian formulation. Moreover, one can relates the conserved quan-
tities to the symmetries of the system.

• It is very useful to generalize the theory from Lagrangian formulation.
For example, one can extend U(1) gauge theory to non-Abelian gauge
theory respected group symmetry SU(2). This is an important issue
in particle physics since this leads to a unification of electromagnetic
interaction and weak interaction to form QED theory.

• It is very useful to generalize the theory to describe the extraordinary
results of the experiments. This leads to an intensive study of modified
gravity theories in order to describe the expanding acceleration of the
universe.

• It provides some other points of view of the theory. For example,
General Relativity can be interpreted as a theory of massless spin-2 in
point of view of particle physics.

1.5.1 Review of Classical Field Theory

In order to study the dynamics of the system with a dynamical fields Φa in
4 dimensional spacetime where a denotes indices of each independent fields,
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it is useful to consider the action of this system as following form

S =

∫
d4x L(Φa, ∂µΦ

a, ∂µ∂νΦ
a, ...), (123)

where L is Lagrangian density. Generally, L can be constructed under the
symmetry we impose. From the fact that the physical quantities should be
the same in all coordinates we use, this leads to the fact that L must be
scalar quantities since scalar is invariant under coordinate transformation.
Moreover, It is convenient to construct L in order to obtain the dimensionless
action. This convenience comes from description of quantum field theory in
path integral approach. One more requirement of construction of L is that it
should be contained only up to first derivative terms, L = L(Φa, ∂µΦ

a). This
requirement comes from the fact that most of equations of motion in physical
field theory is the equation of motion up to their second derivative of the field.
Note that this requirement may be violated since some of higher derivative
terms in the Lagrangian density may leads to the equation of motion up to
second derivative terms.

By using variational principle corresponding to the state that the physical
system will evolve in such that the action is extremal, δS = 0, the equations
of motion can be written as

∂L
∂Φa

− ∂µ

(
∂L

∂(∂µΦa)

)
+ ∂µ∂ν

(
∂L

∂(∂µ∂νΦa)

)
− ... = 0, (124)

which is known as Euler-Lagrange equation.

• Example. Considering equation of motion of a massive real scalar
field as follows

∂µ∂
µϕ−m2ϕ = 0, (125)

which known as Klein-Gordon equation, one can construct the action as

S =

∫
d4x

(
−1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2

)
. (126)

The first term corresponds to the kinetic term which is only one possible way
to construct the scalar quantity from the first derivative of the field. The
requirement of dimensionless action leads to the field have to be mass dimen-
sion. The factor 1/2 is just convention. To obtain the dimensionless one for
the second term, this is only one possible term. The factor 1/2 is obtained by
requiring of the suitable form the equation of motion. We can immediately
check that this Lagrangian density satisfies the Klein-Gordon equation by
substituting this Lagrangian density into Euler-Lagrange equation.
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1.5.2 Classical Field Theory in Curved Spacetime

From GR I course, we have learned that scalar quantities in curved spacetime
must constructed through the general metric, gµν , instead of the Minkowski
metric ηµν . For example, the scalar quantity AµA

µ = gµνAµAν is invariant
under coordinate transformation instead of this quantity ηµνAµAν . More-
over, we also have learned that d4x is not invariant under coordinate trans-
formation while the appropriate volume element which is invariant under
coordinate transformation must be √

−gd4x where g = det gµν . Thus, the
appropriate action should be in the form

S =

∫
d4x

√
−gL, where L =

√
−gL. (127)

Likewise, to have a derivative which is invariant under coordinate transforma-
tion, one must have a “covariant” derivative ∇µ instead of partial derivative
∂µ. Therefore, we obtain

L = L(Φa,∇µΦ
a,∇µ∇νΦ

a, ...). (128)

Consequently, the Euler-Lagrange equation in Eq. (124) will be modified as

∂L

∂Φa
−∇µ

(
∂L

∂(∇µΦa)

)
+∇µ∇ν

(
∂L

∂(∇µ∇νΦa)

)
− ... = 0, (129)

• Example 1. Simple real scalar field

By using the same step with construction in flat spacetime, the simple (canon-
ical) Lagrangian density can be written as

L = −1

2
∇µϕ∇µϕ− V (ϕ). (130)

Here we just change the partial derivative to the covariant derivative and
we have to keep in mind that rising and lowering the indices is obtained by
using the metric gµν . The potential term is chosen as arbitrary function for
generalization.

Substituting L from Eq.(130) into the Euler-Lagrange equation in Eq.
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(129) we have

∂L

∂(∇µϕ)
= −1

2

∂

∂(∇µϕ)
(gρσ∇ρϕ∇σϕ) ,

= −1

2
gρσ

((
∂(∇ρϕ)

∂(∇µϕ)

)
∇σϕ+∇ρϕ

(
∂(∇σϕ)

∂(∇µϕ)

))
,

= −1

2
(gµσ∇σϕ+ gµρ∇ρϕ) ,

= −gµσ∇σϕ.

∇µ

(
∂L

∂(∇µϕ)

)
= ∇µ (g

µσ∇σϕ) ,

= −gµσ∇µ∇σϕ = − ∇µ∇µϕ. (131)

Finally, the equation of motion can be written as

∇µ∇µϕ− V,ϕ = 0, (132)

where V,ϕ denotes dV
dϕ

. Note that gµν∂µϕ∂νϕ is covariant scalar since ∇µϕ =
∂µϕ. However, for convenient, people write it in the form of covariant deriva-
tive. It just remind ourself during calculation that we are performing in
curved spacetime. From the equation of motion above, one can recover Klein-
Gordon equation in curved spacetime by setting the potential as V = 1

2
m2ϕ2.

• Example 2. Gauge field

Now we consider vector field which obey gauge symmetry while the gauge
transformation can be written as

Aµ → A′
µ = Aµ +∇µΨ, (133)

where Ψ is a scalar field. For kinetic terms, they must be gauge invariant. we
know that the field strength tensor Fµν = ∇µAν −∇νAµ are gauge invariant
and also contain first derivative the gauge field. Therefore, it is useful to
construct scalar quantities from the field strength tensor. Consequently, the
kinetic term can be written as

LK = αFµνF
µν , (134)

where α is just a proportional constant determined later. For the mass term
or potential term, it is found that the scalar quantity m2AµA

µ violates gauge
symmetry. Note that this is the reason why photon is massless. In order to
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obtain Maxwell equations, we can add the source into the theory. Finally
the general action of the gauge field can be written as

S =

∫
d4x

√
−g (αFµνF

µν − Aµj
µ) , (135)

where jµ is four current density. Substituting Lagrangian density from Eq.
(135) into Euler-Lagrange equation, we have

∂L

∂(∇µAν)
= αgαρgβσ

∂

∂(∇µAν)
(FαβFρσ) ,

= αgαρgβσ
(

∂Fαβ

∂(∇µAν)
Fρσ +

∂Fρσ

∂(∇µAν)
Fαβ

)
,

= 2αgαρgβσ
(
Fρσ

∂Fαβ

∂(∇µAν)

)
,

= 2αgαρgβσ
(
Fρσ

∂(∇αAβ −∇βAα)

∂(∇µAν)

)
,

= 2αgαρgβσ
(
Fρσ(δ

µ
αδ

ν
β − δµβδ

ν
α)
)
,

= 4αF µν . ⇒ ∇µ

(
∂L

∂(∇µAν)

)
= 4α∇µF

µν . (136)

Also, we have

∂L

∂Aν

= −∂Aρj
ρ

∂Aν

= −δνρj
ρ = −jν . (137)

And then, the equation of motion can be written as

4α∇µF
µν + jν = 0, (138)

while the Maxwell equations are

∇µF
µν = µ0j

ν . (139)

Therefore, we obtain the parameter α as α = −1/(4µ0). Finally, The action
for electromagnetic theory can be rewritten as

S =

∫
dx
√
−g

(
− 1

4µ0

FµνF
µν − Aµj

µ

)
, (140)

1.5.3 Einstein-Hilbert Action

Now we are in position to find the action for general relativity. In general
relativity, the dynamical field of the theory is the metric gµν . In order to find
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the Lagrangian density of the theory, let us consider Lagrangian density as
Lg = f(gµν , ∂ρgµν). For the kinetic term, it may be constructed from ∂ρgµν .
However, ∂ρgµν is not covariant quantity while the covariant form of the first
is ∇ρgµν . Unfortunately, One cannot use may use ∇ρgµν to construct the
Lagrangian density since it always vanish, ∇ρgµν = 0. Therefore, one may
proceed our attention to the second derivative, ∂ρ∂σgµν but this quantity is
not covariant. The covariant quantity which contains the first and second
derivative of the metric is Reimannian curvature tensor, Rµνρσ. However,
as we mentioned before, Lagrangian density must be covariant scalar. The
only one covariant scalar constructed from Rµνρσ is the Ricci scalar R. Note
that the term like RµνρσR

µνρσ and RµνR
µν are also covariant scalar but they

contain the higher than second order derivative terms. Let us try first to
use this scalar to be the Lagrangian density for the gravity. Therefore, the
action can be expressed as

Sg =

∫
d4x

√
−g R, (141)

where this action is known as Einstein-Hilbert action. In order to see that this
action correspond to the Einstein field equation or not, let us use variational
principle to find the equation of motion of this action. Since R is very
complicated differential form of the the metric, we will use direct variational
principle to the action instead of use the Euler-Lagrange equation. Note
that the calculation by using Euler-Lagrange equation is very lengthy but
straightforwardly. Varying the action with respect to the metric we have

δSg =

∫
d4xδ(

√
−g gµνRµν) =

∫
d4x

[
δ
√
−g gµνRµν︸ ︷︷ ︸

δSg3

+
√
−g δgµνRµν︸ ︷︷ ︸

δSg1

+
√
−g gµνδRµν︸ ︷︷ ︸

δSg2

]
.(142)

From the identity

ln(detM) = Tr(lnM), detM ̸= 0, (143)
ln(g) = Tr(ln[gµν ]).

Then, consider the variation

δ ln(g) = δTr(ln[gµν ]),
1

g
δg = (g−1)µνδgµν ,

δg = g gµνδgµν ,

δ
√
−g =

1

2
√
−g

δ(−g) = − 1

2
√
−g

g gµνδgµν ,

=
1

2

√
−g gµνδgµν . (144)
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From

gµρg
ρν = δνµ, (145)

δgµρg
ρν + gµρδg

ρν = 0,

gρνδgµρ = −gµρδg
ρν ,

δgµν = −gµρgνσδg
ρσ. (146)

Then, Eq. (144) can be expressed as

δ
√
−g = −1

2

√
−g gµνδg

µν . (147)

Substituting this result into (142), one obtains

δSg1 + δSg3 =

∫
d4x

√
−g

(
Rµν −

1

2
gµνR

)
δgµν , (148)

δSg2 =

∫
d4x

√
−g Gµνδg

µν .

From these two terms, one properly obtain Einstein tensor which is the left
hand side of Einstein field equation. However, we have to consider the second
term which is proportional to δRµν . In order to obtain δRµν , one needs to
know the form of δΓρ

µν . Let us start with varying the connection as following

δΓρ
µν =

1

2
δgρσ (∂µgσν + ∂νgσµ − ∂σgµν) + gρσ (∂µδgσν + ∂νδgσµ − ∂σδgµν)(149)

=
1

2
gρσ (∇µδgσν +∇νδgσµ −∇σδgµν) . (150)

The detail calculation from the fist to the second line is left for the student
in the Exercise. From the above expression, one can see that even though
the connection Γρ

µν is not tensor, the variation δΓρ
µν is. Then, we now move

to calculate of the variation of the Ricci tensor δRµν as following

δRµν = δ
(
∂µΓ

ρ
νρ − ∂ρΓ

ρ
νµ + Γρ

µσΓ
σ
ρν − Γρ

ρσΓ
σ
µν

)
= ∂µδΓ

ρ
νρ − ∂ρδΓ

ρ
νµ + δΓρ

µσΓ
σ
ρν + Γρ

µσδΓ
σ
ρν − δΓρ

ρσΓ
σ
µν − Γρ

ρσδΓ
σ
µν ,

= ∂µδΓ
ρ
νρ + Γρ

µσδΓ
σ
ρν − Γσ

µνδΓ
ρ
ρσ − (∂ρδΓ

ρ
νµ − δΓρ

µσΓ
σ
ρν + Γρ

ρσδΓ
σ
µν),

= ∂µδΓ
ρ
νρ + Γρ

µσδΓ
σ
ρν − Γσ

µνδΓ
ρ
ρσ − Γσ

µρδΓ
ρ
νσ − (∂ρδΓ

ρ
νµ − δΓρ

µσΓ
σ
ρν + Γρ

ρσδΓ
σ
µν − Γσ

µρδΓ
ρ
νσ),

= ∇νδΓ
ρ
µρ −∇ρδΓ

ρ
µν . (151)
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Therefore, the second term in Eq. (142) can be expressed as

δSg2 =

∫
d4x

√
−g gµν

(
∇νδΓ

ρ
µρ −∇ρδΓ

ρ
µν

)
,

=

∫
d4x

√
−g ∇ν (δ

ν
σ∇ρδg

ρσ − gρσg
να∇αδg

ρσ) ,

=

∫
d4x

√
−g ∇νV

ν . (152)

In order to take this contribution to be zero, one requires that the vector
V ν must vanish at the surface. This is not normal situation we found in the
literature since we require the first derivative of the variation of the dynamical
field to be zero at the surface,∇µδg

ρσ, instead of its variation δgρσ. This is the
price we pay for adding second derivative terms into the Lagrangian density.
Another way to consistently take this term to be zero is including additional
term to cancel out this term. The additional term are usually proportional to
the surface term and the Lagrangian density is proportional to the extensive
curvature of the surface [?]. The interpretation physical properties of this
term still in active area of gravitational and cosmological researches. Student
who especially interested of this subject can study further in the reference
and also can provide a results as a report and presentation of this course.
Finally, we have the variation as

δSg =

∫
d4x

√
−g Gµνδg

µν = 0,⇒ Gµν = 0. (153)

This is the Einstein equation in the vacuum. In order to obtain the Einstein
equation with source one has to include the action for matter field into our
consideration.

1.5.4 Energy-Momentum Tensor

If the matter is also considered, there exists the action for the matter part,

S = Sg + Sm =

∫
d4x

(
1

2κ
LEH + Lm

)
, (154)

where Sm denotes the action for matter contents, κ is a constant and the
factor number 2 is just convention. From Eq. (153), the variation of the
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action can be written as

δS =

∫
d4x

(
1

2κ
δLEH + δLm

)
,

=

∫
d4x

(
1

2κ

√
−gGµνδg

µν + δLm

)
,

=

∫
d4x

√
−gδgµν

1

2κ

(
Gµν +

2κ√
−g

δLm

δgµν

)
= 0.

In order to obtain Einstein equation, one can define the energy momentum
tensor of the matter as

Tµν ≡ −2√
−g

δLm

δgµν
=

−2√
−g

δ(
√
−gLm)

δgµν
,

=
−2√
−g

(√
−g

δLm

δgµν
+ Lm

δ
√
−g

δgµν

)
,

= 2

(
−δLm

δgµν
+

1

2
Lmgµν

)
, (155)

where

κ ≡ 8πG

c4
. (156)

In classical field theory, there is a similar definition of the energy momentum
tensor called ”canonical energy momentum tensor” corresponding to Noether
current. This Noether current is associated the translational symmetry of the
Lagrangian and can be defined as

Sµν ≡ δL
δ(∂µΦi)

∂νΦi − ηµνL. (157)

where Φi are field we are considering. This definition is less useful than
we defined before since it cannot be generalized to one in curve spacetime.
Moreover, our definition is manifestly symmetric.

In the case that the matter is only a scalar field,

Lm = Lϕ = −1

2
gρσ∇ρϕ∇σϕ− V (ϕ), (158)

then the energy momentum tensor for the scalar field can be found as follows,
δLϕ

δgµν
= −1

2

δgρσ

δgµν
∇ρϕ∇σϕ,

= −1

2
∇µϕ∇νϕ,

Tµν = ∇µϕ∇νϕ+

(
1

2
gρσ∇ρϕ∇σϕ+ V (ϕ)

)
gµν . (159)
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1.5.5 Infinitesimal general coordinate transformation

The objective of this section is to see the relation between the conserva-
tion of matter and the variation under IGCT. This transformation for the
coordinate, xµ reads

xµ → x′µ = xµ + ξµ, (160)

where ξµ is a infinitesimal parameter (its value is very small). The variation
of action for matter is written as

δSm =

∫
d4x

√
−gTµνδgµν . (161)

Considering δgµν under IGCT,

gµν → g′µν = gµν + δgρσ. (162)

Under the full GCT, the metric transforms as follows

g′µν(x′α) =
∂x′µ

∂xρ

∂x′ν

∂xσ
gρσ(xα). (163)

Putting (160) and keeping to the first order of ξµ,

g′µν(x′α) = (δµρ + ∂ρξ
µ)(δνσ + ∂σξ

ν)gρσ(xα),

≃ gµν(xα) + gρν(xα)∂ρξ
µ + gρµ(xα)∂ρξ

ν ,

= gµν(xα) + 2gρ(µ∂ρξ
ν). (164)

See that g′µν(x′α) and gµν(xα) are considered in different points. In order
to obtain the quantities on the same point, doing the Taylor’s expansion of
g′µν(x′α) about the point xα as

g′µν(x′α) = g′µν
∣∣∣
x′=x

+ ∂ρg
′µν

∣∣∣
x′=x

(x′ρ − xρ) + . . . ,

≃ gµν(xα) + ∂ρg
µν(xα) ξρ. (165)

Hence, the variation of metric is

δgµν(xα) = g′µν(xα)− gµν(xα),

≃ −ξρ∂ρg
µν + 2gρ(µ∂ρξ

ν). (166)

Let us compute,

∇µξν = gµρ∇ρξ
ν ,

= gµρ(∂ρξ
ν + Γν

ρσξ
σ), (167)

→ ∇µξν +∇νξµ = 2gρ(µ∂ρξ
ν) + 2gρ(µΓν)

ρσξ
σ,

→ 2gρ(µ∂ρξ
ν) = ∇µξν +∇νξµ − 2gρ(µΓν)

ρσξ
σ, (168)
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and

∇ρg
µνξρ = 0 = ∂ρg

µνξρ + Γµ
ρσg

σνξρ + Γν
ρσg

µσξρ, (169)
→ −ξρ∂ρg

µν = 2gσ(µΓν)
ρσξ

ρ. (170)

Plugging (168) and (170) into (166),

δgµν = ������
2gσ(µΓν)

ρσξ
ρ +∇µξν +∇νξµ −������

2gρ(µΓν)
ρσξ

σ,

= ∇µξν +∇νξµ,

= 2∇(µξν). (171)

The variation of action for matter in (161) becomes

δSm =

∫
d4x

√
−gTµν2∇(µξν). (172)

Since Tµν is symmetric, we can write

δSm =

∫
d4x

√
−gTµν∇µξν ,

=

∫
d4x

√
−g [∇µ(Tµνξ

ν)−∇µTµν ] ,

=

∫
d4x

√
−g (−ξν∇µTµν) + (Tµνξ

ν)
∣∣∣
boundary

. (173)

Let the infinitesimal parameter vanishes at boundary and we consider ξµ ̸= 0
in volume. So, we obtain

δSm = 0, → ∇µTµν = 0. (174)

We can conclude that the conservation for matter is obtained from the vari-
ation of action for matter under IGCT.

2 Cosmological Principle and FLRW metric
We have learned so far the geometry of the simple astronomical objects by
using General Relativity. It is found that some distinguished observational
predictions of General Relativity are compatible with observational data.
This makes General Relativity become the one of fundamental theory of na-
ture. It is worthwhile to test General Relativity with cosmological objects.
This can be evaluated by considering geometry of the universe. The ba-
sic concept for applying General Relativity to describe the evolution of the
universe is main content of this chapter.
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2.1 Cosmological principle
Due to nonlinearity of Einstein field equation, it is not easy to obtain gen-
eral solutions of this equation. So far, we have learned that it is possible to
extract some solutions from this equation by imposing reasonable symmetry
to the theory. For example, the Schwarzschild solution can be obtained by
solving Einstein field equation with static and spherical symmetry. In cos-
mology, the symmetries of spacetime are provided by cosmological principle.
Cosmological principle is a principle based on the assumption as following
”the universe is isotropic and homogeneous in three-space”. This principle
provides a smooth or uniform universe at large scale. It is important to note
that this principle is compatible with observational data, specifically Cosmic
Microwave Background (CMB) radiation data. Therefore this assumption
(cosmological principle) provide a reasonable symmetries to study geometry
and dynamics of the universe by using General Relativity.

Since the cosmological principle provides us the symmetry only in three-
dimensional space. Therefore, one can sprite the spacetime into product
space as follows

R︸︷︷︸
real

× Σ︸︷︷︸
3-space

, (175)

where R represents (real) time and Σ represents a homogeneous and isotropic
3-space. Therefore, the spacetime can be treated as a series of non-interacting
spacelike hypersurface labeling by universal time parameter as shown in
figure 16. The the 3-dimensional hypersurface which is homogeneous and
isotropic will be obeyed translational and rotational invariants respectively.
This corresponds to maximally symmetric space. This kind of space will
provide us the simple way to find the general form of the metric. We will
discuss the maximally symmetric space in next subsection in detail.

2.2 Maximally symmetric space
By definition, the maximally symmetric space is a space which has number of
degrees of freedom of the metric is equal to number of isometry of the metric.
Note that isometry is a symmetry of the metric which is not necessary to be
a physical symmetry. To understand clearly, let us consider n-dimensional
flat Euclidean space, Rn. This space will be described by a range-2 (n × n)
symmetric metric gµν . The number of degrees of freedom of this metric is

n(n+ 1)/2. (176)
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Considering the space with has rotational and translational invariants, we
have
translation ⇒ n degrees of freedom
rotation ⇒ n

2
(n− 1) degrees of freedom

}
n+

n

2
(n− 1) =

n

2
(n+ 1) .(177)

We can see that the number of degree s of freedom of the metric is equal to
the number of the isometry of the metric. This corresponds to the maximally
symmetric space. Note that, in n dimensions, we can rotate x axis to one of
the other n − 1 axes and the next axis can be rotated to other n − 2 axes,
which means all of the axes can be rotated

(n− 1) + (n− 2) + (n− 3) + . . .+ 1 =
n

2
(n− 1) ways. (178)

It makes our sense that the more number of isometry, the fewer functions
needed to specify the properties of the spacetime. One of important conse-
quence of the maximally symmetric space is that there is only one number
needed to specify. This number is independent of the coordinates and cor-
responds to the curvature K. Maximally symmetric space will provide the
fact that Rρσµν is the same everywhere. Since the curvature tensor depends
on the metric, by using the symmetry of the indices, one has

Rρσµν ∝ gρµgσν − gρνgσµ = K (gρµgσν − gρνgσµ) . (179)

Consequently, the Ricci tensor and Ricci scalar can be written as

Rσν = gρµRρσµν = gρµK (gρµgσν − gρνgσµ) ,

= K
(
δµµgσν − δµν gσµ

)
= K (n− 1) gσν , (180)

R = gσνRσν = gσνK (n− 1) gσν = K (n− 1) δνν = Kn (n− 1) .(181)

Finally, one find that the number corresponding to the space curvature can
be written in terms of Ricci scalar as follows

K =
R

n (n− 1)
. (182)

This is a main result follows from the maximally symmetric space. We will
use this result in next subsection in order to find the general form of the
metric describing the dynamics of the universe.

2.3 Friedmann-Lemaitre-Robertson-Walker metric
Considering the homogeneous and isotropic hypersurface, the general form
of the line element can be written as

dσ2 = gijdx
idxj. (183)
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Figure 16: Non-interacting hypersurface parametized by universal time pa-
rameter.

In order to illustrate the form of the metric, one may consider three points
triangle in this space. For isotropy, the triangle must be the same for all
time. From this argument one find that each hypersurface will be differ-
ent only by a overall factor dσ2

2 = S2(xk, t)dσ2
1 = S2(xk, t)gijdx

idxj. For
homogeneity, it will be satisfied only if the overall factor must be indepen-
dent of the coordinates xk. Then most general form of the homogeneous and
isotropic hypersurface can be written as

dσ2 = S2(t)γijdx
idxj, (184)

where hij is a component of the metric in the original hypersurface depending
only on spatial coordinates xk.The coordinate xk are the comoving coordi-
nates while the observers in these coordinate will not see any dynamics of
the objects called comoving observers. Therefore, the most general form of
the metric in this spacetime can be written as

ds2 = −dt2 + S2(t)γijdx
idxj, (185)

where the term proportional to dtdxi disappears due to the requirement of
non-interacting hypersurface. Now we are in the position to find the form of
the metric hij. Let us consider the subspace defined as following

dσ2 = γijdx
idxj = e2Bdr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (186)

where we have used the coordinate transformation to eliminate the other
function. Note that for isotropy one find that there are only two indepen-
dent functions to specify the metric. However, from the general coordinate
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invariant, we can use coordinate transformation to eliminate one of them.
By using the properties of the maximally symmetric space as discussed in
the previous subsection one has

Rµν = K (n− 1) gµν = −2Kgµν ,

Rrr =
2

r
B′ = 2Ke2B, (187)

Rθθ = −e−2B (1− rB′)− 1 = 2Kr2. (188)

We leave detail calculation for Γi
jk and Rij in the Exercise. From the Eq.

(187) one has

B′ = Kre2B,∫
e−2BdB = K

∫
rdr,

e−2B = −Kr2 + C, (189)

where C is an integrate constant. Substitute the Eq. (189) into the Eq.
(188) we have

e−2B (1− rB′)− 1 = −2Kr2,

e−2B
(
1− r2Ke2B

)
− 1 = −2Kr2,

e−2B − r2K − 1 = −2Kr2,

−���Kr2 + C −���r2K − 1 = −���
2Kr2,

C = 1. (190)

Thus, one has

e−2B = 1−Kr2, (191)

and the line element in Eq. (185) will then be

ds2 = −dt2 + S2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
. (192)

To classify the geometry of this spacetime, one can consider the value of the
curvature K. One find that the geometry of the spacetime can be distin-
guished by the sign of the curvature K > 0, K < 0 and K = 0. To see
explicitly, one may redefine the curvature in terms of the dimensionless one
as follows

k =
K

|K|
, r̄ = |K|

1
2 r, R2(t) =

S2(t)

|K|
. (193)
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Therefore, the line element in Eq. (192) can be expressed as

ds2 = −dt2 +R2(t)

[
dr̄2

1− kr̄2
+ r̄2

(
dθ2 + sin2 θdϕ2

)]
, (194)

where the curvature of the maximally symmetric space can be classified very
simply as

k = −1 → open,
k = 0 → flat, (195)
k = 1 → closed.

It is important to note that the metric explicitly obeys the rotational in-
variant. This is is also by construction of the metric we have used. For the
translational invariant, it is a hidden symmetry. One cannot see explicitly
from the metric. However, we can see that one can choose the origin of the
radial coordinate completely arbitrary. Therefore it means that the metric
contains translational invariant.

In order to obtain the geometric properties of FLRW metric, let us con-
sider the line element of the three-dimensional hypersurface as follows

dσ2 =
dr̄2

1− kr̄2
+ r̄2

(
dθ2 + sin2 θdϕ2

)
. (196)

By using the coordinate transform such that

dχ =
dr̄√

1− kr̄2
, (197)

the line element in Eq. (196) can be written as

dσ2 = dχ2 + S2(χ)
(
dθ2 + sin2 θdϕ2

)
, (198)

where S can be classified according to different kinds of curvature as

S2(χ) = sinh2 χ for k = −1, (199)
S2(χ) = χ2 for k = 0, (200)
S2(χ) = sin2 χ for k = 1. (201)

By embedding these three-dimensional surface into four-dimensional Eu-
clidean space, one find that for k = 1 the surface is the three-dimensional
sphere, for k = 0 the surface is flat and for k = −1 the surface is hyper-
boloid. This is the reason why we call closed, flat and open geometry for
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k = 1, k = 0 and k = −1 respectively. We leave the explicit calculations for
this embedding procedure in Exercise.

From Eq. (194), the radial coordinate r̄ is dimensionless and the scale
factor S is length dimension. It is convenient to consider the scale factor
with dimensionless since it determines the how much the three-surface will
be magnified. Conventionally, most of cosmologists redefine the radial coor-
dinate r̄, the scale factor and the curvature as follows

a(t) =
R(t)

R0

, r = R0r̄, κ =
k

R2
0

. (202)

Therefore the line element in Eq. (194) can be written in terms of new
variables as

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (203)

The metric corresponding to this line element is commonly use in cosmology
and the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is usually
referred to this metric. It is important to note that the curvature κ is now
dimensionfull and can be chosen as arbitrary number. The geometry of the
spacetime can be classified by κ > 0, κ = 0 and κ < 0. However, It is
convenient to choose this number as κ = 1, κ = 0 and κ = −1 for closed, flat
and open geometry of the three-dimensional hypersurface.

Exercise:

1. From the line element dσ2 = γijdx
idxj = e2Bdr2+ r2

(
dθ2 + sin2 θdϕ2

)
,

find non-zero components of Γi
jk and Rij.

2. By embedding three-dimensional hypersurface dσ2 = dr2

1−k r2
+r2

(
dθ2 + sin2 θdϕ2

)
into four-dimensional Euclidean space, show that for k = 1, k = 0 and
k = −1 the geometry of the space corresponds to sphere, flat and
hyperboloid respectively.

2.4 Energy momentum tensor
In order to study dynamics of the universe, one has to use the Einstein field
equation with FLRW metric. In the left hand side of the Einstein equation,
there is only one function to determine which is the scale factor a(t) and
only one number which is the curvature κ. The scale factor will provide us
the evolution behavior of the universe and the curvature will provide us the
geometry of the three-dimensional hypersurface. For the right hand side of
the Einstein equation,one needs to find the form of the fluid to satisfy the
homogeneity and isotropy of the universe.
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2.4.1 Perfect fluid

The perfect fluid is the fluid with out viscosity and heat transfer between its
elements in its rest frame. Since there are no heat transfers, the components
T 0i will vanish. This satisfies the same requirement for the metric where
g0i = 0. Moreover, no viscosity leads to no shear between elements of the
fluid, so that the components T ij, (i ̸= j) vanish. This also satisfies the same
requirement for the metric where gij = 0 for i ̸= j. As a result, for the
perfect fluid there are two functions to determine which are energy density,
ρ, and pressure, p, of the fluid. Note that the pressure p serves as the the
pressure in every direction satisfying isotropic condition. Moreover, to satisfy
the homogeneity and isotropy, one has to require that the energy density and
pressure must be independent of the spatial coordinates, so that one obtains
ρ = ρ(t) and p = p(t). As a result, the EMT can be written in the matrix
form as

T µν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (204)

Note that this form of the EMT is valid only in its rest frame. One needs
a covariant form of the EMT in order to use it in the field equation. Let us
find this covariant form by using the Lorentz transformation with Lorentz
matrix as

Λi
j = δij +

γ − 1

v2
vivj, Λi

0 = γvi, Λ0
0 = γ. (205)

By applying these to the energy momentum above, one obtains

T ij = pδij + vi vjγ2(ρ+ p), (206)
T 0i = viγ2(ρ+ p), (207)
T 00 = (γ − 1)p+ γ2ρ. (208)

Note that calculation details are left in Exercise. By using the form of the
4-velocity as

U0 =
dt

dτ
= γ, U i =

dxi

dτ
= γvi. (209)

The components of the EMT above can be written as

T µν = (ρ+ p)Uµ U ν + pηµν . (210)
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Now, we have already the form of the perfect fluid which can be expressed
in any frame. However, this form can be used only in the flat spacetime. We
need to express it in more general where the curved spacetime includes. This
can be generalized by replacing ηµν with the general metric tensor gµν and
remembering that the indices can rise or lower by using gµν . As a result, the
generally covariant form of the EMT for the perfect fluid can be expressed
as

T µν = (ρ+ p)Uµ U ν + pgµν . (211)

2.4.2 Friedmann equation dynamics of the universe

We have already known the general form of both metric tensor and EMT.
Now, we will perform calculation to find the exact solutions of them. In order
to solve for the solution, let us find the component of the Einstein tensor first.
By using the FLRW metric in Eq. (203) and the definition of the connection
in Eq. (103), each components of the connection can be calculated such as

Γ0
ij =

1

2
g00 (���∂ig0j +���∂jg0i − ∂0gij) , (212)

=
1

2
(−1)

(
−∂t(a

2γij)
)
, (213)

= γijaȧ =
ȧ

a
a2γij = Hgij, (214)

where dot denote the derivative with respect to the coordinate t and H = ȧ/a
is the Hubble parameter. Other non-zero components can be calculated in
the same way and then leave for the student to perform it for Exercise. The
results can be expressed as

Γi
0j = Hδij, Γ1

11 =
κr

1− κr2
, Γ1

22 = −r(1− κr2), Γ1
33 = sin2 θ Γ1

22,

Γ2
33 = − sin θ cos θ, Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ.(215)

By using these component of the connection and the definition of the Ricci
tensor, the non-zero components of the Ricci tensor and the Ricci scalar can
be written as

R00 = −3(Ḣ +H2), (216)

Rij =

(
Ḣ + 3H2 +

2κ

a2

)
gij, (217)

R = gµνRµν = g00R00 + gijRij = 6
(
Ḣ + 2H2 +

κ

a2

)
. (218)
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Consequently, the non-zero components of the Einstein tensor can be written
as

G0
0 = −3

(
H2 +

κ

a2

)
, (219)

Gi
j = −

(
2Ḣ + 3H2 +

κ

a2

)
δij. (220)

The non-zero components of EMT can be expressed as T 0
0 = −ρ, T i

j = pδij.
Now we have all components of ones in both side of the Einstein equation.
By putting these into the Einstein equation, one obtains (0, 0) and (i, j)
components respectively as

3
(
H2 +

κ

a2

)
= 8π Gρ, (221)

−
(
2Ḣ + 3H2 +

κ

a2

)
= 8π Gp. (222)

Now, we have two equations and three variables, a, ρ, p. It might not be
possible to solve the exact solutions for them. However, we actually have
one more equation, coming from the conservation of the EMT as follows

∇µT
µ
ν = 0∂µT

µ
ν + Γµ

µρT
ρ
ν − Γρ

µνT
µ
ρ = 0,

∇µT
µ
0 = ∂µT

µ
0 + Γµ

µρT
ρ
0 − Γρ

µ0T
µ
ρ ,

= ∂0T
0
0 + Γi

i0T
0
0 − Γi

j0T
j
i ,

= −ρ̇− 3Hρ−Hδijp δ
j
i ,

= −(ρ̇+ 3H(ρ+ p)) = 0,

ρ̇+ 3H(ρ+ p) = 0. (223)
Now we have 3 equations and 3 variables to solve. It seem like we can

use these equation to completely solve for the solutions. However, one found
that only two of them are independent. Actually, one can show that ∂t(221)+
3H(( 221) + (222)) = 0 gives Eq. (223). In order to solve the exact solution
of the equations, one has to impose one more condition. It is convenient to
impose the condition between ρ and p to characterize the properties of the
perfect fluid. The well-known condition is the ”equation of state”,

p = wρ, (224)
where w is the equation of state parameter. Substituting this into continuity
equation Eq. (223), and then solving ρ in terms of a, one obtains

ρ = ρ0a
−3(1+w), (225)

where ρ0 is the integration constant representing the energy density at the
present time at a = 1. Now let us consider the universe filling with one of
well-known matter/energy
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• Non-relativistic matter

Non-relativistic matter is also known in other names such as dust or mat-
ter. As we have known dust is the fluid with pressureless. Therefore, the
equation of state parameter vanishes, w = 0. Substituting w = 0 into Eq.
(225), we have ρ ∝ a−3. This is also make our sense since the number of
particle is conserved then the energy density is scaled by its volume which is
proportional to a3.

• Relativistic matter

Relativistic matter is also known radiation. From Exercise we found that the
energy momentum of radiation (gauge field) is traceless. This corresponds
to ρ + 3p = 0, → w = 1/3. Substituting w = 1/3 into Eq. (225), we have
ρ ∝ a−4. This is also make our sense since the energy of the photon (or
radiation) is also inversely proportional to wavelength which is scaled by a.
Together with volume scaling, then the energy density is proportional to a−4.

Now we can go further to find the exact solution. Let substituting ρ =
ρ0a

−3(1+w) into Eq. (221) and then we have

3
(
H2 +

κ

a2

)
= 8π Gρ0a

−3(1+w). (226)

For simplicity, let us solve this equation in the case of flat universe k = 0.
As a result, the solution can be written as

a =

(
t

t0

) 2
3(1+w)

, t0 =
√
12πG(1 + w) (227)

As a result, for matter and radiation we have

• matter: a ∝ t2/3.

• radiation: a ∝ t1/2.

Before we finish this section, let consider one of an important equation called
acceleration equation. Eliminating κ term in Eq. (221) and Eq. (222), one
obtains

2Ḣ + 2H2 = −8πG

3
(1 + 3w)ρ, → ä

a
= −4πG

3
(1 + 3w)ρ. (228)

From this equation, one finds that for the well-known matter/energy (all
non-relativistic, w = 0 and relativistic, w = 1/3 ones), it is not possible to
provide the universe with accelerated expansion. Note that this is possible
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for cosmological constant and leave for students in Exercise. Finally, I will
briefly review the standard picture of the universe including the evolution
of the universe and the major events in the history of the universe. This is
illustrated roughly in Fig. 17 and I will explain more detail in the classroom.

Figure 17: The left panel shows the standard evolution of the universe. The
right panel shows the major events in the history of the universe [?].

3 Cosmological model
3.1 Cosmological constant

• The simplest candidate for explain the accelerated expansion of the
universe nowadays is known as ΛCDM where the Λ stands for the dark
energy contributed from cosmological constant and CDM stands for
the contribution of dark matter namely Cold dark matter. This two
contribution is about 95% fo the conten in our universe while the con-
tribution from dark energy is about 70% and the contribution from
dark matter is about 25%.

• The cosmological constant is the promissing candidate for dark energy
to drive the accelerated expansion of the universe nowadays

The action for such the model can be expressed as

S =
1

16πG

∫
d4x

√
−g (R− 2Λ) + Sm, (229)
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where Sm is the action for the matter. Varying the action with respect to
the metric tensor, one obtains

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (230)

By using the FLRW metric, the Friedmann equation and the acceleration
equation can be written as

(
H2 +

κ

a2

)
=

8π G

3
ρ+

Λ

3
, (231)

ä

a
=

8π G

3
(ρ+ 3p) +

Λ

3
. (232)

• When Einstein constructed the Einstein equation, he believed that the
universe is static. Therefore, he put the cosmological constant into the
Einstein equation to make the universe static.

To achieve such goal, one can find the solution such that ȧ = 0 = ä. Let us
examine how the cosmological can be. Firstly let consider the universe filled
by dust so that the pressure vanishes. From Eq. (232) and Eq. (231), one
obtains

8π G

3
(ρ+ 3p) +

Λ

3
= 0, ⇒ ρ =

Λ

4π
, (233)

8π G

3
ρ+

Λ

3
=

κ

a2
⇒ κ

a2
= Λ. (234)

• After that, Lemaitre showed that even this is a solution to the equations
of motion, it is not stable due to the small perturbation.

• In 1917, de Sitter found that ther exist the solution in the empty space
with H =

√
Λ/3.

• During 1910-1920, Slipler observed the spectral of the galaxies and
found that it is red-shifted.

• In 1922, Friedmann found the evolving solution with the expanding
universe.

• In 1927, Lermaitre proposed the ”hot Big Bang” model of the universe.
This is may be the first model to explain how the universe evolves
associated with general relativity. In such the model, the evolution of
the universe can be devided into 3 states as follows
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1. Fundametal elements are formed and the universe expands from the
point source. It dominated by pressureless matter, a ∝ tn(0 < n < 1).

2. Nebulars and galaxies are formed. The phase is represented by the
static universe proposed by Einstein, a ∝ const

3. A period of a fast expansion of the universe, a ∝ tn(1 < n). This phase
is realized by de Sitter solution.

• In 1929, Hubble formulated Hubble’s law by combining the results of
Slipher. The existence of cosmological constant was clearly not required
to give rise to the cosmic expansion of the universe.

• In 1945, in the book ”The Meaning of Relativity” written by Einstein,
he said that ”if the Hubble’s expansion had been discovered at the time
of creation of the general theory of relativity, the cosmological constant
would not never have been introduced”.

• In 1970, Gamov recalled that ”when I was discussuing cosmological
problem with Einstein, he remarked that the introduction of the cos-
mological constant termwas the biggest blunder he ever made in his
life”. Remarkably, the cosmological constant becomes the main ingre-
dient in the standard cosmology nowadays.
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