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Perturbations in the universe

• According to cosmological principle, the universe is
homogeneous and isotropic on large scales.

• In principle, the universe cannot be perfectly
homogeneous and isotropic, because structures in the
universe such as clusters of galaxies, galaxies, etc, cannot
be created in the completely smooth universe.

• In the standard notion, structures in the universe are
developed from small inhomogeneity and anisotropy in
the early universe.

• The small inhomogeneity and anisotropy can be treated
as perturbations around the homogeneous and isotropic
universe.



Perturbation in the metric tensor

• In the subsequent topics, we will study how to quantify
perturbations in spacetime and matter in the universe by
decomposing metric and energy-momentum tensors into
background and perturbed parts.

• The reference for this topic is [arXiv:astro-ph/0101563].



Perturbation in the metric tensor

• To describe small deviation from the homogeneity and
isotropy of the spacetime, we decompose the metric
tensor into the background part and perturbed part as

gµν = ḡµν + δgµν , (1)

where ḡµν and δgµν are the background and perturbed
metrics.

• We will use an over bar to denote the homogeneous and
isotropic background quantities.

• The metric ḡµν is the FLRW metric, while |δgµν | < 1.

• The components of the metric can be determined from
the symmetry of the systems, e.g.,
ḡ00 = −1, ḡ0i = 0, ḡij = a2(t)δij .



Perturbation in the metric tensor

• In the perturbed universe, there is no special symmetry to
determine the components of the perturbed metric.

• Hence, we parameterize each component of the perturbed
metric as follows:

• The component 0− 0 can be expressed in term of a
scalar function ψ(τ, ~x) as

g00 = −a2(τ) (1 + 2ψ(τ, ~x)) , (2)

where τ =
∫
dt/a is the conformal time and |ψ| < 1

denotes deviation from FLRW metric.



Perturbation in the metric tensor

• The components 0− i and i − 0 can be expressed in term
of a three-dimensional vector.

gi0 = g0i = a2(τ)vi(τ, ~x) . (3)

Note that there is no background part in g0i .

• From the vector analysis, any vector field can be
decomposed into curl- and divergence-free parts, so that

gi0 = g0i = a2(τ) (B,i(τ, ~x)− Sj(τ, ~x)) , (4)

where subscript ,i denotes ∂/∂x i and Si ,i = 0.

• We see that gi0 can be expressed in terms of a scalar
function and divergence-free vector.



Perturbation in the metric tensor

• The component gij can be expressed in terms of scalar
function as

gij = a2(τ) [(1− 2φ(τ, ~x)) δij + 2E,ij(τ, ~x)] . (5)

• This component of the metric can also be expressed in
terms of the divergence-free vector Fi as

gij = a2(τ) (Fi ,j(τ, ~x) + Fj ,i(τ, ~x)) . (6)

• The last part of hij is the three-dimensional tensor which
is tressless and divergence-free :

dij = a2(τ)Hij(τ, ~x) , where H i
i = H ij

,j = 0 . (7)



Perturbation in the metric tensor

• Hence, we have

gij = a2 [(1− 2φ)δij + 2E,i ,j + Fi ,j + Fj ,i + Hij ] . (8)

• The perturbed metric can be parameterized by four scalar
functions, ψ, φ,B ,E , two divergence-free vectors, Si ,Fi

and a traceless and divergence-free tensor Hij .

• There are four degrees of freedom from four scalar
functions, four degrees of freedom from two
divergence-free vectors, and two degrees of freedom from
tressless and divergence-free tensor, so that we have ten
degrees of freedom in total.

• These scalar, 3-D vector and 3-D tensor fields completely
characterized components of the metric tensor.



Perturbation in the metric tensor

• For linear perturbations, these scalar, vector, and tensor
fields evolve independently.

• This means that the perturbation in metric tensor can be
decomposed into scalar, vector, and tensor perturbations
(or modes).



Perturbation in the energy-momentum tensor
• The energy-momentum tensor of the perfect fluid can be

written in the general form as

Tµν = (ρ + P)uµuν + gµνP , (9)

where ρ, P , and uµ are the energy density, pressure, and
four-velocity of the fluid.

• The energy density and pressure are scalar quantities,
they can be decomposed into a background and a
perturbed parts as

ρ = ρ̄(τ) + δρ(τ, ~x) , and P = P̄(τ) + δP(τ, ~x) . (10)

• In the homogeneous and isotropic background, the spatial
component of the four-velocity must vanish, i.e.,

uµ =
1

a
(1, 0, 0, 0) , uµ = a (−1, 0, 0, 0) , (11)



Perturbation in the energy-momentum tensor

• The temporal and spatial components of the four-velocity
can also be expressed in terms of scalar functions and
divergence-free vector V i , so that

uµ =
1

a

(
u0, v ,i + V i

)
, uµ = a (u0, v,i + Vi) , (12)

• The temporal component of uµ is estimated from

gµνu
µuν = −1 , → u0 =

1

a
(1− ψ) + higher order .

(13)

• Hence, we have

uµ =
1

a

(
1− ψ, v ,i + V i

)
, uµ = a (−1− ψ, v,i + Vi) ,

(14)



Perturbation in the energy-momentum tensor

• The energy-momentum tensor can be expressed up to the
first order perturbations as

T 0
0 = − (ρ̄ + δρ) , (15)

T 0
i =

(
ρ̄ + P̄

)
(B,i + v,i + Vi − Si) , (16)

T i
0 = −

(
ρ̄ + P̄

) (
v ,i + V i

)
, (17)

T i
j =

(
P̄ + δP

)
δij . (18)



Perturbation in the energy-momentum tensor

• For general fluid, the component i-j of the
energy-momentum tensor can contain traceless and
divergence-free parts:

T i
j =

(
P̄ + δP

)
δij + πi

j , (19)

where πi
j describes anisotropy in the spatial part of the

energy-momentum tensor.

• The anisotropic perturbation πi
j can be decomposed into

scalar, vector, and tensor parts as

πi
j = Π,i

,j −
1

3
∆2Πδij︸ ︷︷ ︸

traceless

+
1

2

(
πi
,j + π,ij

)
+ Πi

j , (20)

where ∆2 ≡ ∂i∂
i , πi

,i = Πi
i = Πi

j ,i = 0.



Gauge degrees of freedom

• Inserting the perturbed metric and perturbed
energy-momentum tensors into the Einstein equation, we
get two evolution equations and two constraint equations
as follows:

• Components 0− 0 and 0− i yield energy and momentum
constraint equations

3H
(
φ̇ +Hψ

)
−∆2φ−H∆2σ = −

m2
p

2
a2δρ ,(21)

φ̇ +Hψ = −
m2

p

2
a2
(
ρ̄ + P̄

)
(v + B) , (22)

where a dot denotes the derivative with respect to the
conformal time, H ≡ ȧ/a, and σ ≡ −B + Ė is the shear
perturbation.



Gauge degrees of freedom

• Components i − i and i 6= j yield two evolution equations

φ̈ + 2Hφ̇ +Hψ̇ +
(

2Ḣ +H2
)
ψ =

m2
p

2
a2δP ,(23)

σ̇s + 2Hσs − ψ + φ = m2
pa

2Π , (24)

• The temporal and spatial components of ∇νT
ν
µ = 0 give

the conservation equations for energy and momentum

δρ̇ + 3H(δρ + δP) = (ρ̄ + P̄)
[

3φ̇−∆2(v + Ė )
]
,(25)

∂

∂τ

[
(ρ̄ + P̄)(v + B)

]
+ δp +

2

3
∆2Π

= −(ρ̄ + P̄) [ψ + 4H(v + B)] . (26)



Gauge degrees of freedom

• For scalar perturbation, the metric perturbation can be
described by four scalar functions, φ,B ,E and ψ.

• The perturbation in the energy-momentum tensor can
also be quantified by four scalar functions, δρ, δP , v and
Π.

• However, if we combine the evolution equations from
∇νT ν

µ = 0, and the perturbed Einstein equations, only
five equations are linearly independent.

• In general, the relation between δρ and δP is given by

δP = c2s δρ , (27)

where c2s is the sound speed square of the perturbations.



Gauge degrees of freedom

• This suggests that two degrees of freedom are not
physical degrees of freedom. They are gauge degrees of
freedom.

• The gauge degrees of freedom are consequences of
diffeomorphism invariance of GR.

• The gauge degrees of freedom can be eliminated by
performing calculations in suitable hypersurfaces or by
using gauge-invariant variables which are suitable
combinations of perturbed variables.

• In this lecture, we briefly discuss how to eliminate gauge
degrees of freedom by choosing suitable hypersurfaces,
and we will focus on scalar perturbations.



Gauge degrees of freedom

• The gauge transformations in GR are the coordinate
transformations.

• The infinitesimal coordinate transformations can be
written as

τ̃ = τ + ξ0(τ, x i) , x̃ i = x i + ξ,i(τ, x i) , (28)

where ξ0 and ξ are gauge degrees of freedom. These
quantities are the perturbed quantities because they
depend on spatial coordinates.



Gauge degrees of freedom

• The metric tensor can be written in terms of the line
element ds2 which is a scalar quantity as

ds2 = gµνdx
µdxν

= a2(τ)
{
− (1 + 2ψ)dτ 2 + 2B,idτdx

i

+[(1− 2φ)δij + 2E,ij ]dx
idx j

}
. (29)

• We now consider gauge transformation of this line
element.

• Up to the first order in the coordinate transformations,
the infinitesimal coordinate transformations of the gauge
functions are

ξ0(τ, x i) = ξ0(τ̃ , x̃ i) , ξ(τ, x i) = ξ(τ̃ , x̃ i) , (30)



Gauge degrees of freedom

× The relation between the gauge function at different
coordinates can be computed as

ξ0(τ, x i) = ξ0(τ̃ , x̃ i) +
∂ξ0

∂τ

∣∣∣∣
∗

(τ − τ̃) +
∂ξ0

∂x j

∣∣∣∣
∗

(x j − x̃ j) + ...

= ξ0(τ̃ , x̃ i)− ∂ξ0

∂τ

∣∣∣∣
∗
ξ0(τ, x i)− ∂ξ0

∂x j

∣∣∣∣
∗

∂ξ

∂xj

∣∣∣∣
0

+ ...

= ξ0(τ̃ , x̃ i) + higher order . (31)

where subscripts ∗ and 0 denote evaluation at (τ̃ , x̃ i) and
(τ, x i).



Gauge degrees of freedom

• From the gauge transformation:

τ̃ = τ + ξ0(τ, x i) , x̃ i = x i + ξ,i(τ, x i) . (32)

• The inverse coordinate transformations are

τ = τ̃ − ξ0(τ, x i) = τ̃ − ξ0(τ̃ , x̃ i) , x i = x̃ i − ξ,i(τ̃ , x̃ i) ,
(33)

• Hence, we have

dτ = d τ̃ − ξ̇0d τ̃ − ξ0,idx̃ i , dx i = dx̃ i − ξ̇,id τ̃ − ξ,i,jdx̃
j .

(34)



Gauge degrees of freedom

× The calculation is

dτ = d τ̃ − ∂ξ0

∂τ̃

∣∣∣∣
∗
d τ̃ − ∂ξ0

∂(̃x)i

∣∣∣∣∣
∗

dx̃ i

= d τ̃ − ξ̇0d τ̃ − ξ0,idx̃ i . (35)

• For the scale factor, we have

a(τ) = a(τ̃) + ȧ|τ̃ (tau − τ̃) = a(τ̃)− ξ0ȧ(τ̃) . (36)



Gauge degrees of freedom

• Each part of The line element in the new coordinates is
transformed as

− a2(τ)(1 + 2ψ)dτ 2

= −a2(1− 2ξ0H)(1 + 2ψ)(d τ̃ 2 − 2ξ̇0d τ̃ 2 − 2ξ0,idx̃
id τ̃) .

(37)

2a2(τ)B,idτdx
i

= 2a2B,id τ̃dx̃
i + higher order . (38)

a2(1− 2ξ0H) [(1− 2φ)δij + 2E,ij ] dx
idx j

= a2(1− 2ξ0H) [(1− 2φ)δij + 2E,ij ]×
(dx̃ idx̃ j − 2ξ̇,id τ̃dx̃ j − 2ξ,i,kdx̃

kdx̃ j) . (39)



Gauge degrees of freedom

• Combining all parts, we get

ds2 = −a2

1 + 2(ψ − ξ0H− ξ̇0︸ ︷︷ ︸
=ψ̃

)

 d τ̃ 2 + 2a2(B,i + ξ0,i − ξ̇,i︸ ︷︷ ︸
=B̃,i

)d τ̃dx̃ i

+ a2


1− 2(φ + ξ0H︸ ︷︷ ︸

=φ̃

)δij

+ 2(E,ij − ξ,ij︸ ︷︷ ︸
=Ẽ,ij

)

 dx̃ idx̃ j (40)



Gauge degrees of freedom

• Under gauge transformations, the perturbation variables
are transformed as

ψ̃ = ψ −Hξ0 − ξ̇0 , B̃ = B + ξ0 − ξ̇ , (41)

φ̃ = φ +Hξ0 , Ẽ = E − ξ . (42)

• If we perform the calculation on hypersurfaces where
Ẽ = 0, the spatial gauge degree of freedom can be fixed
such that ξ = E .

• Under the gauge transformation,

B̃ − ˙̃E = B − Ė + ξ0 . (43)



Gauge degrees of freedom

• The temporal gauge degree of freedom can be fixed such
that ξ0 = −B + Ė if we perform calculation
onhypersurfaces where B̃ −˜̇E = 0.

• This means that if we work in the hypersurface on which
B̃ = Ẽ = 0, both temporal and spatial gauge degrees of
freedom are completely fixed.

• The hypersurface on which B̃ = Ẽ = 0 can be reached
from any hypersurfaces if we choose ξ = E and
ξ0 = Ė − B .

• This gauge choice is the Conformal Newtonian Gauge.

• We see that two gauge degrees of freedom could be
eliminated/fixed if we set two of the perturbation
variables to zero.



Gauge degrees of freedom
• Fixing the gauge can also be done by choosing the gauge

degrees of freedom based on the gauge transformation
properties of the perturbations in a fluid.

• In general, the gauge degrees of freedom may not be
completely fixed even though two perturbation variables
are set to zero.

• One of the gauge choices, which is often used in
numerical integration, is the Synchronous gauge in which
the perturbations in the temporal components of the
metric vanish, i.e., ψ̃ = B̃ = 0.

• For the Synchronous gauge, we have

ξ0 =
1

a

∫
dτaψ +

f (x i)

a
, (44)

where f (x i) is an arbitrary function of spatial coordinates
which is a residual gauge freedom.



Gauge degrees of freedom

• To fix a residual gauge freedom, we have to put additional
conditions by performing calculations in a special frame of
fluid, e.g., a rest frame of cold dark matter.

• In the subsequent topics, we will present the evolution
equations for the linear perturbations in the universe.

• The reference for these topics is [arXiv:astro-ph/9506072].



Evolution equations for perturbations
• In the following studies, we will focus on the Newtonian

gauge in which the line element takes the form

ds2 = a2(τ)
{
−(1 + 2ψ)dτ 2 + (1− 2φ)dx idxi

}
. (45)

• The following equations will be expressed in the Fourier
space

ψ(τ, ~x) =

∫
d3ke i

~k·~xψ(τ, ~k) (46)

• According to our reference, velocity perturbation is
described in terms of its divergence, and the anisotropic
perturbation is described in terms of shear stress:

(ρ̄ + P̄)θ ≡ ik jδT 0
j , (ρ̄ + P̄)σ ≡ −(k̂i k̂j −

1

3
δij)Σi

j ,

(47)

where k̂ = ~k/|~k |.



Evolution equations for perturbations
• Here, the traceless component of T i

j is

Σi
j ≡ T i

j −
1

3
δi jT

k
k , (48)

• The perturbed Einstein equations in the Newtonian gauge
yield

3H
(
φ̇ +Hψ

)
+ k2φ = −

m2
p

2
a2δδρ , (49)

k2
(
φ̇ +Hψ

)
=

m2
p

2
a2(ρ̄ + P̄)θ , (50)

φ̈ +H(ψ̇ + 2φ̇) +
(

2Ḣ +H2
)
ψ

+
k2

3
(φ− ψ) =

m2
p

2
a2δP , (51)

k2(φ− ψ) =
3m2

p

2
a2(ρ̄ + P̄)σ , (52)



Evolution equations for CDM perturbations

• The perturbation in energy density δρ is described by the
dimensionless density contrast δ ≡ δρ/ρ̄.

• The cold dark matter (CDM) can be described by a
perfect fluid, so that the evolution equations for its
perturbations can be computed from ∇νT

ν
µ = 0:

δ̇c = −θc + 3φ̇ , θ̇c = − ȧ

a
θc + k2ψ , (53)

where subscript c denotes CDN.

• During some epochs, the mean free path of photons and
neutrinos is very long, so that the perturbations cannot
be described by perfect fluid.



Evolution equations for perturbations in radiation

• To describe perturbations in photon and neutrino, we use
the distribution function which is defined on the phase
space.

• The phase space is spanned by conjugate momentum and
coordinates.

• The conjugate momentum is the spatial component of
the 4-momentum with lower indices denoted by Pi .

• To remove the contribution from the metric tensor, it is
convenient to work with momentum in the orthogonal
bases pi defined as

ηµνpµpν = −m2 = gµνPµPν . (54)

Here, ηµν is the Minkowski metric, and m is a rest mass
of a particle.



Evolution equations for perturbations in radiation

• The relation between Pµ and pµ is given by

Pµ = eαµpα , so that gµνeαµe
β
ν = ηαβ , (55)

where eαµ is a tetrad.

• For the Newtonian gauge, we get

P0 = (1 + ψ)p0 , Pi = ejipj = a(1− φ)pi . (56)

• The energy of a particle defined in orthogonal bases is

ε = p0 =
√
pipi + m2 =

√
p2 + m2 , → P0 = −(1+ψ)ε .

(57)



Evolution equations for perturbations in radiation

• An infinitesimal volume of phase space is
dV = dx1dx2dx3dP1dP2dP3, and the number of particles
in a unit volume is

dN = f (x i ,Pj ,P0, τ)dV . (58)

• In the background universe, the distribution function is
the Fermi-Dirac distribution for fermions and the
Bose-Einstein distribution for bosons given by

f0(ε) =
gs

2π2

1

eε/T0 ± 1
, (59)

where T0 = aT denotes the present temperature of the
particles, the factor gs is the number of spin states.



Evolution equations for perturbations in radiation

• The energy-momentum tensor can be written in terms of
the distribution function and the 4-momentum
components as

Tµν =

∫
dP1dP2dP3 (−g)−1/2

PµPν
P0

f (x i ,Pj , τ) , (60)

• In the perturbed universe, it is convenient to quantify the
momentum in terms of

qj ≡ apj , (61)

• Moreover, we define the direction of the momentum qi
through the unit vector ni by

qj = qnj , where ninj = δij . (62)



Evolution equations for perturbations in radiation
• The distribution function can be decomposed into the

background and perturbed parts as

f (x i ,Pj ,P0, τ) = f0(q)
[
1 + Ψ(x i , q, nj , τ)

]
, (63)

where we have used ε = q for massless particles.

• The perturbations in (−g)−1/2 and the volume element
are

(−g)−1/2 = a−4(1−ψ+3φ) , dP1dP2dP3 = (1−3φ)q2dqdΩ ,
(64)

where dΩ is the solid angle associated with direction ni .

• For example, the component 0-0 of the
energy-momentum tensor is

T 0
0 =

∫
dP1dP2dP3 (−g)−1/2

P0P
0

P0
f = −a−4

∫
q3dq dΩ f0(q) (1+Ψ) .

(65)



Evolution equations for perturbations in radiation

• For the background, we have

ρ̄ = a−44π

∫
q3dq f0(q) . (66)

• For the perturbation, we get

δρ = 3δP = a−4
∫

q2dqdΩ qf0(q)Ψ . (67)

• In the Fourier space, the distribution function becomes

f (x i , q, nj , τ)→ f (k i , q, nj , τ) , (68)

where k i is a wavenumber of the Fourier modes.



Evolution equations for perturbations in radiation
• We can integrate out q from the distribution function,

and expand the angular-dependent part of the resulting
function in a series of Legendre polynomials Pl(k̂ · n̂) as

F (~k , n̂, τ) ≡
∫
q3dqf0(q)Ψ∫
q3dqf0(q)

=
∞∑
l=0

(−i)l(2l+1)Fl(~k , τ)Pl(µ) ,

(69)
where µ ≡ k̂ · n̂ = cos θ.
• For example:

δ ≡ δρ

ρ̄
=

∫
dΩ

∫
q3dqf0(q)Ψ

4π
∫
q3dq f0(q)

=
1

4π

∫
dΩF (~k , n̂, τ)

=
1

2

∫
dµ

∞∑
l=0

(−i)l(2l + 1)Fl(~k , τ)Pl(µ) = F0 ,



Evolution equations for perturbations in radiation

× In the previous calculation, we have used
dΩ = 2π sin θdθ = −2πd cos θ = −2πdµ, and∫ 1

−1
Pl (x)Pm (x) dx =

2

2l + 1
δlm . (70)

× For θ and σ, one can shows that

θ =
3

4
kF1 , σ =

1

2
F2 . (71)



Evolution equations for perturbations in radiation
• The evolution of the distribution function is described by

the Boltzmann equation which is given in real space by

∂f

∂τ
+

dx i

dτ

∂f

∂x i
+

dq

dτ

∂f

∂q
+

dni
dτ

∂f

∂ni
=

(
∂f

∂τ

)
C

, (72)

where the term on the RHS corresponds to the collision
between the group of particles described by the
distribution function and the other particles.

• The term dx i/dτ can be written as

dx i

dτ
=

dλ

dτ

dx i

dλ
=

dλ

dτ
P i , (73)

where λ is an affine parameter.

• We can compute dλ/dτ as

Pα =
dxα

dλ
, → dλ

dτ
=

1

P0
. (74)



Evolution equations for perturbations in radiation

• Hence,
dx i

dτ
=

dλ

dτ

dx i

dλ
=

P i

P0
=

qni

ε
, (75)

where we keep the first order in perturbation.

• The term dq/dτ can be computed from the geodesic
equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 . (76)

• Using dλ/dτ on the previous page, the above equation
becomes

P0dP
µ

dτ
+ ΓµαβP

αPβ = 0 , (77)



Evolution equations for perturbations in radiation

• Hence, we get

dq

dτ
= qφ̇− ε(q, τ) ni∂iψ . (78)

• The terms dni/dτ and ∂f /∂ni are first order in
perturbation, so that we ignore the multiplication of these
terms.

• The Boltzmann equation in the Fourier space is

∂Ψ

∂τ
+i

q

ε
(~k ·n̂) Ψ+

d ln f0
d ln q

[
φ̇− i

ε

q
(~k · n̂)ψ

]
=

1

f0

(
∂f

∂τ

)
C

.

(79)



Evolution equations for perturbations in neutrino
• Let us first consider the case of massless neutrinos, for

this case, there is no collision term, so that

∂Ψ

∂τ
+ i

q

ε
(~k · n̂) Ψ +

d ln f0
d ln q

[
φ̇− i

ε

q
(~k · n̂)ψ

]
= 0 . (80)

In the following calculation, we will set ε = q.
• We integrate the above equation over q3dq and divide

the result by
∫
q3dq as∫

q3dq

{
∂f0Ψ

∂τ
+ ikµf0Ψ + q

df0
dq

[φ′ − ikµψ]

}
= 0 ,

∂F

∂τ
+ ikP1(µ)F +

∫
q4dq

df0
dq︸ ︷︷ ︸

=−4
∫
q3dqf0

[φ′ − ikP1(µ)ψ]∫
q3f0dq

= 0 ,

∂F

∂τ
+ ikP1(µ)F − 4P0(µ) [φ′ − ikP1(µ)ψ] = 0 . (81)

• To extract the evolution equations for the multipole
moments, we multiply the equation on the previous slide
by Pl(µ) and integrate the result over µ.



Evolution equations for perturbations in neutrino

• The coupled differential equations for the multipoles
expansion of neutrino distribution:

δ̇ν = −4

3
θν + 4φ̇ ,

θ̇ν = k2

(
1

4
δν − σν

)
+ k2ψ ,

Ḟν l =
k

2l + 1

[
lFν (l−1) − (l + 1)Fν (l+1)

]
, l ≥ 2 .

(82)



Evolution equations for perturbations in photon

• We now consider the Boltzmann equation for the photon.

• For the photon, there is a coupling between photons and
charged particles.

• The coupling arise from the Compton scattering between
photons and electrons and the effects of scattering are
transferred to baryons through the Coulomb interaction
between baryons and electrons.

• Since the mass of the charged baryons (protons) is much
larger than the mass of electrons, the main contribution
to the scattering process comes from baryons (through
baryon velocity).

• Hence, this scattering process is usually called the
coupling between photons and baryons.



Evolution equations for perturbations in photon

• the Boltzmann equation for photons is

∂F

∂τ
+ ik(µF − 4 [φ′ − ikµψ]

= aσTne

[
F0 + 4ikµvb − F − 1

2
F2P2 (µ)

]
. (83)



Evolution equations for perturbations in photon

• The EOM for the multipole moments of photon
perturbations are

δ̇γ = −4

3
θγ + 4φ̇ ,

θ̇γ = k2

(
1

4
δγ − σγ

)
+ k2ψ − aneσT (θγ − θb) ,

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3

−9

5
aneσTσγ +

1

10
aneσT (Gγ 0 + Gγ 2) ,

Ḟγ l =
k

2l + 1

[
lFγ (l−1) − (l + 1)Fγ (l+1)

]
−aneσTFγ l , l ≥ 3 (84)



Evolution equations for perturbations in baryon

• For baryon, we have to add the contribution from
energy-momentum transfer due to photon coupling to the
evolution equation for θb, such that the energy and
momentum of photon-baryon fluid are conserved.

• The evolution equations for perturbations in baryon are

δ̇b = 3φ̇− θb , (85)

θ̇b = −Hθb + k2c2bδb + k2ψ +
4ρ̄γ
3ρ̄b

aneσT (θγ − θb) ,

(86)

where c2b is a baryon sound speed.



The important processes for CMB

• In the early times (the age of the universe ¡ 300,000
years), the mean energy of photons is large.

• As a result, free electrons and nuclei cannot be combined
to form stable neutral atoms, consequently, the number
density of free electrons is large.

• During this epoch, photons and baryons are tightly
coupled.

• The coupling arises from the Compton scattering between
photons and electrons and the effects of scattering are
transferred to baryons through the Coulomb interaction
between baryons and electrons.



The important processes for CMB
• Due to the tight coupling, the mean free path between

photons and baryons is very short such that they move
together which can be described by a single fluid called
photon-baryon fluid, and the higher multipole moment of
photon perturbation is suppressed.

• However, on length scales that are larger than the mean
free path between photons and baryons, the photons can
diffuse through the baryons

• As a result, the perturbations in energy density of the
photon-baryon fluid evolve like the force oscilation.

• When the universe further expands, the mean energy of
photons reduces, consequently, stable neutral atoms can
be formed.

• At the recombination epoch, the number density of free
electrons reduces rapidly due to the formation of the
neutral atoms, as a result, photons can freely propagate.



The important processes for CMB

• The epoch in which most of the photons last scatter with
the charged particles before freely propagating to the
observer at present is the last scattering surface.

• During the free propagation of the photons, the
perturbation in the energy density of the photon-baryon
fluid generates higher multipole moments of photon
perturbations due to the free-streaming process.

• The free-streaming leads to an oscillation pattern in CMB
angular power spectrum.

• The oscillation of the perturbations in energy density of
the photon-baryon fluid at the last scattering surface
leads to the oscillation pattern in the power spectrum of
matter.



The important processes for CMB

• The freely propagating photons are redshifted due to the
expansion of the universe such that the wavelengths of
the photons are in the range of microwave and infrared
when they reach the observer at present.

• These photons are distributed almost smoothly in the
universe, so that they can be viewed as the photons
background in the universe known as the Cosmic
Microwave Background (CMB).

• To connect predictions from the cosmological models
with observations, the temperature perturbations of the
CMB are quantified by the power spectrum.



The angular power spectrum of CMB

• To study perturbations in photons, we expand the angular
part of the distribution function as

F (~k , n̂, τ) =
∞∑
l=0

(−i)l(2l + 1)Fl(~k , τ)Pl(µ) , (87)

• Since δ = F0 and δ = 4δT/T̄ = ∆T , we define

F (~k , n̂, τ) ≡ 4∆T (~k , n̂, τ).

• The relation δ = 4δT/T̄ = ∆T is computed from
ρ ∝ T 4.



The angular power spectrum of CMB

• Hence, the angular-dependent of the temperature
perturbation in photon can be expanded as

∆T (~k , n̂, τ) =
∞∑
l=0

(−i)l(2l + 1)∆T l(~k , τ)Pl(µ) , (88)

• In the observation of CMB, we observe the CMB photons
at present and at our location in different directions n̂, so
that we expand n̂–dependence in terms of spherical
harmonics Ylm(n̂) as

∆T (~x0, n̂, τ0) =
∑
l ,m

almYlm(n̂) , (89)

where subscript 0 denotes evaluation at present.



The angular power spectrum of CMB

• We define the angular power spectrum Cl of the CMB
perturbation/anisotropy in terms of alm as

〈alma∗l ′m′〉 = δll ′δmm′Cl . (90)

• Due to the statistical homogeneity and isotropy of the
perturbation fields, the angular power spectrum Cl does
not depend on position and m, and 〈alma∗l ′m′〉 vanishes for
l 6= l ′ or m 6= m′.



The power spectrum of matter
• The power spectrum of matter at a given redshift can be

computed from the transfer function:

T (k , z) ≡ δ(k , z)

δ(0, z)

δ(0, z = zi)

δ(k , z = zi)
, (91)

where δ(k , z) is the density contrast of matter for wave
number k and redshift z , and zi is the redshift at the
initial time which usually is the end of inflation.
• The power spectrum of matter is

Pk(z) = T 2(k , z)Pi , (92)

where Pi is the primordial power spectrum computed
from cosmic inflation.
• For the scalar perturbation, the primordial power

spectrum can be parameterized as

Pi = As

(
k

k0

)1−ns(k)

, (93)

where As is the amplitude of the primordial scalar
perturbation, and ns is the spectral index.



Figure: Angular power spectrum of the temperature perturbations
in the Cosmic Microwave Background (CMB).



Figure: Oscillation in the matter power spectrum due to baryon
oscillation: Baryon Acoustic Oscillation (BAO) (from
arXiv:0910.5224). Ω0

m varies from 0.1 (top) to 0.4 (bottom).



Tight coupling

• Before recombination the electron number density ne is
large, so that photons and baryons are tightly coupled,
with

aneσT ≡ τ−1c � H ∼ τ−1 . (94)

• In the tight coupling limit, we suppose that τc/τ � 1 and
kτc � 1.

• In this limit, we have

θ̇γ = aneσT (θb − θγ) , (95)

θ̇b =
4ρ̄γ
3ρ̄b

aneσT (θγ − θb) . (96)



Tight coupling

• Hence,

θ̇γ − θ̇b = −aneσT
(

1 +
4ρ̄γ
3ρ̄b

)
(θγ − θb) , (97)

yielding θγ → θb exponentially.

• Due to tight coupling, we have

Ḟγ l = −aneσTFγ l , l ≥ 3 . (98)

Hence, Fγ l decreases exponentially.



The acoustic oscillation

• The temperature perturbations is related to the average
distribution function F as

∆T =
1

4
Fγ . ⇒ ∆T0 =

1

4
Fγ0 =

1

4
δγ . (99)

• Above the photon diffusion scale, the photons and
baryons are tightly coupled.

• At recombination, the diffusion length is much smaller
than the Hubble horizon, implying that we consider small
scale perturbations.



The acoustic oscillation

• The evolution equation for the temperature perturbations
is

∆̈T0 +
Ṙ

1 + R
∆̇T0 + k2c2s ∆T0 = F , (100)

where c2s is the sound speed of the photon-baryon fluid
defined as

c2s ≡
1

3

1

1 + R
, (101)

and the force term is

F ≡ φ̈− k2

3
ψ +

Ṙ

1 + R
φ̇ . (102)

• The above equation describes the oscillation of the
photon-baryon fluid in the gravitational driving forces due
to external potentials.



The acoustic oscillation

• The solution can be computed using the Green method as

[1 + R]1/4∆T0

= ∆T0|I cos krs +

√
3

k
[∆̇T0 +

1

4
Ṙ∆T0]I sin krs (103)

+

√
3

k

∫ τ

τI

dτ ′[1 + R(τ ′)]3/4sin[krs(τ)− krs(τ
′)]F (τ ′) ,

where a subscript I denotes evaluation at the initial time.

• Here, rs is the sound horizon defined as

rs ≡
∫ τ

0

csdτ
′ . (104)



The acoustic oscillation

• For an adiabatic perturbations, we have

∆T0 ∝ sin(krs) (105)

• Hence, ∆T0 has peaks at

krs =
2n + 1

2
π , n ∈ {0, 1, 2, ...} . (106)



Perturbations on large scales

• On large scales the effect of the tight coupling is
negligible, so that the evolution equations for radiation
(photon + neutrino) and matter (CDM + baryon) can be
read from Eqs. (84) and (85) as

δ̇r = −4

3
θr + 4φ̇ , θ̇r = k2 1

4
δr + k2ψ , (107)

δ̇m = 3φ′ − θm , θ̇m = −Hθm + k2ψ , (108)

where a subscript r denotes radiation while a subscript b

denotes matter.



Perturbations on large scales

• To solve the previous evolution equations, we use the
perturbed Einstein equations to write ψ and φ in terms of
the density contrast and velocity perturbations.

• Adiabatic condition:

δm =
1

4
δr . (109)

• We get

ψ = −1

2
δr = constant , → ∆T0 = −1

2
ψ , (110)

which describe the temperature perturbations due to the
metric perturbations on the last scattering surface. This
is an ordinary Sachs-Wolfe effect.



Perturbations on large scales

• When the universe evolves through the matter-radiation
equality the metric perturbation on large scales changes.

• This gives the contribution to the ordinary Sachs-Wolfe
effect, such that

[∆T0 + ψ] =
1

3
ψ, (111)

which is the Sachs-Wolfe effect.



free streaming

• After recombination, photons decouple from baryons and
consequently freely propagate (free streaming) from the
last scattering surface to observers at present.

• for l ≥ 2, the EOM for photon multipoles takes the form
of the recursion relation of the spherical Bessel function
jl(x),

d

dx
jl(x) =

l

2l + 1
jl−1(x)− l + 1

2l + 1
jl+1(x) , (112)

⇒ d

dτ
jl(kτ) =

l

2l + 1
kjl−1(kτ)− l + 1

2l + 1
kjl+1(kτ) .



free streaming
• The EOMs for monopole and dipole of photon

perturbations can be written in the form of the recursion
relation of the spherical Bessel function as follows:

∆̇T0 = −k∆T1 + φ̇︸︷︷︸
extra term

, (113)

∆̇T1 =
k

3
∆T0 −

2k

3
∆T2 +

k

3
ψ︸︷︷︸

extra term

. (114)

• The extra term in Eq. (114) can be eliminated if ∆T0 is
redefined as

∆̃T0 ≡ ∆T0 + ψ . (115)

• Hence,

˙̃∆T0 = −k∆T1 + φ̇ + ψ̇ , ∆̇T1 =
k

3
∆̃T0 −

2k

3
∆T2 .

(116)



free streaming

• The evolution equations of the photon perturbations can
be written for all multipoles as

d

dτ
∆Tl =

l

2l + 1
k∆T (l−1)−

l + 1

2l + 1
k∆T (l+1)+δl0

(
φ̇ + ψ̇

)
.

(117)

• Let us define

X ≡
∫ τ

τ∗

dτ ′
[
ψ̇(τ ′) + φ̇(τ ′)

]
jl (kτ − kτ ′) , Yl ≡ ∆T l+δl0X ,

(118)
where τ∗ denotes the starting time.

• Hence, Eq. (117) becomes

d

dτ
Yl =

l

2l + 1
kYl−1 −

l + 1

2l + 1
kYl+1 . (119)



free streaming
• Choosing the starting time of the integration to be
τ∗ = τs , where τs is the conformal time at the Last
scattering surface, the solution for the equation in the
previous slide is

∆T l (τ, k) = [∆T0 + ψ]︸ ︷︷ ︸
SW effect

(τs , k) jl (k(τ − τs))

+

∫ τ

τs

dτ ′
[
ψ̇(τ ′) + φ̇(τ ′)

]
jl (kτ − kτ ′) , (120)

where a subscript s denotes evaluation on the Last
scattering surface, the second term on the RHS of this
equation is the contribution to the temperature
perturbations from the time-dependence of the metric
perturbations, and this contribution is the integrated
Sachs-Wolfe (ISW) effect arising during free streaming.



free streaming

• The free streaming can distribute oscillation of the
temperature perturbations in photon-baryon fluid on the
Last scattering surface to higher multipoles.

•
∆T l (τ0, k) = ∆T0 ,osc (τs , k) jl (kτ∗) , (121)

where τ∗ ≡ τ0 − τs .
• For the adiabatic case, ∆T0 ,osc (τs , k) has peaks at

k =
nπ

2rs
, n ∈ {1, 3, 5, ...} . (122)



free streaming

• According to the maximum of the spherical Bessel
function jl(kτ∗) at l ' kτ∗, the maximum of ∆2

T0osc

observed at the present occurs around

l =
nπ

2rs
τ∗ = nlA , n ∈ {1, 3, 5, ...} . (123)

where lA is a characteristic acoustic index.



Line of Sight Integration
• The reference of this topic is [astro-ph/9603033]. We

define differential optical depth for Thomson scattering as
κ̇ = aneσT .

• When the polarization is included, the Boltzmann
equation for photon perturbations becomes

∆̇
(S)
T + ikµ∆

(S)
T = φ′ − ikµψ

+κ̇

[
−∆

(S)
T + ∆

(S)
T0 + iµvb +

1

2
P2(µ)Π

]
, (124)

where ∆
(S)
T is the scalar mode of the temperature

perturbation.

• Here,
Π = ∆

(S)
T2 + ∆

(S)
P2 + ∆

(S)
P0 , (125)

where ∆
(S)
P is the scalar mode of polarization in

temperature perturbation.



Line of Sight Integration

• The Boltzmann equation can be written in the integral
form as

∆
(S)
T =

∫ τ0

0

dτ e ikµ(τ−τ0)︸ ︷︷ ︸
angular dependent

S
(S)
T (k , τ) . (126)

• For the temperature perturbation, the source term is

S
(S)
T (k , τ) = g

(
∆T0 + ψ − v ′b

k
− Π

4
− 3Π′′

4k2

)
(127)

+ e−κ (φ′ + ψ′)− g ′
(
vb
k

+
3Π′

4k2

)
− 3g ′′Π

4k2
.

(128)



Line of Sight Integration

• We use the decomposition

eikµ(τ−τ0) =
∞∑
l=0

(2l + 1)(−i)l jl(k(τ0 − τ))Pl(µ) . (129)

• We finally get

∆
(S)
(T ,P)l(k , τ = τ0) =

∫ τ0

0

S
(S)
T ,P(k , τ)jl [k(τ0 − τ)]dτ,

(130)

• The advantage of (130) is the decomposition of ∆
(S)
(T ,P)l

in to S
(S)
T ,P , which does not depend on the multipole

moment l and a geometrical term jl , which does not
depend on the particular cosmological model.



CLASS

• input.c ⇒ precompute Bessel function, read cosmological
parameters, tune initial conditions

• background.c ⇒ solve evolution equations for the
background universe

• thermodynamics.c ⇒ compute evolution of number
density of electron

• perturbations.c ⇒ compute evolution of the perturbations
in all species

• compute CMB angular power spectrra and matter power
spectra



Basic of 3+1 decomposition

• To use package xTensor in Mathematica to compute
evolution equations for the perturbations, it is convenient
to perform the calculation in 3+1 formalism. The
reference is gr-qc/0703035.

• In vector analysis, we can define a two-dimensional plane
in three-dimensional space using the unit vector ~n that is
normal to the plane.

• We can decompose any vector in three-dimensional space
to two parts.

• The first is the projection of the vector along ~n, and the
second is the projection on the plane.



Basic of 3+1 decomposition

• A vector ~A can be projected along ~n using a scalar
product An = ~A · ~n
• Hence, the vector ~Ap ≡ ~A− ~nAn is a vector that is

normal to ~n, i.e., lies on the plane.

• We can define the projection operater, P ≡ I− ~n ⊗ ~n, to
project any vector on the plane defined by normal vector
~n, where I is the identity matrix and ⊗ denotes the tensor
product.



Basic of 3+1 decomposition

• In four-dimensional spacetime, the three-dimensional
hypersurface can be defined using a one-form nµ that is
normal to any vectors lie on the hypersurface.

• The hypersurfaces are space-like if their normal one-form
is time-like, while they are time-like if the normal
one-form is space-like.

• We use the unit time-like nµ to define the space like
hypersurfaces.

• Hence, the projection operator is defined as

Pβ
α = δβα + nαn

β . (131)



Basic of 3+1 decomposition

• It is easy to show that Pβ
αn

α = 0 because nα is normal to
the hypersurfaces.

• Tensor Tµν is on hypersurfaces

Tµν = Pα
µTαν . (132)

• The projection of the metric tensor gµν on the
hypersurfaces is

gµνP
µ
αP

ν
β = gαβ+nαnβ ≡ hαβ , (133)

where hαβ is the metric tensor of the space-like
hypersurface defined by nµ.



Basic of 3+1 decomposition
• The metric tensor can be written in the form of the

Arnowitt–Deser–Misner (ADM) metric as

ds2 = gµνdx
µdxν = −N2dt2+hij(N

idt+dx i)(N jdt+dx j) ,
(134)

where N is a Lapse function and ni (defined on the
hypersurface) is a shift vector.

• The Latin indices denote the indices of the quantities on
the hypersurface, which are raised or lowered by the
metric hij .

• The metric hij can be used to compute the intrinsic
curvature of the hypersurface as

(3)Rij = ∂kΓk
ij − ∂iΓk

jk + Γk
ijΓ

l
kl − Γl

ikΓk
jl , (135)

where (3)Rij is the Ricci tensor of the hypersurface.



Basic of 3+1 decomposition

• The Christoffel symbol on the hypersurface:

Γk
ij =

1

2
hkl
(
∂ih[jl ] + ∂jhil − ∂lhij

)
. (136)

• The extrinsic curvature of the hypersurface can be
computed from

Kij =
1

2N

(
ḣij − Dinj − Djni

)
. (137)

• The Ricci scalar of the four-dimensional spacetime can be
expressed as

R =(3) R + KijK
ij − K 2 , (138)

where (3)R = hij (3)Rij and K = hijKij .



Basic of 3+1 decomposition
• The component 0-0 of the Einstein equation can be

obtained by projecting both indices along nµ:

Gµνn
µnν =

1

2
(3)R +

1

2
K 2 − 1

2
KijK

ij = Tµνn
µnν , u (139)

where we have set 8πG = 1.

• The component 0-i of the Einstein equation can be
obtained by projecting one index along nµ and another
index on the hypersurface:

Pµ
αn

νGµν = Pµ
αn

νRµν = DiK − DjK
j
i = Pµ

αn
νTµν , (140)

where Di is the covariant derivative compatible with hij .

• In terms of the Lapse function and the shift vector, we
have

nµ =

(
1

N
,−N i

N

)
, nµ = (−N , 0) . (141)



Perturbations

We consider the Newtonian gauge:

g0i = Ni = 0 , (142)

g00 = −N2 = −a2 (1 + 2ψ) , (143)

gij = hij = a2 (1− 2φ) δij , (144)

nµ =
1

a

(
1

(1 + 2δN)
, 0

)
. (145)


