
Chapter 1
Bayesian Statistics

1.1 Introduction to Bayesian Statistics

In the realm of science, the accessibility of information is inherently limited, making our understand-

ing of nature inherently probabilistic. Scientific analyses typically rely on drawing conclusions about

fundamental physical models from diverse sets of observational data. There are two distinct method-

ologies, grounded in different interpretations of probability. In traditional statistics, the probability of

an event is equated with the long-term relative frequency of its occurrence. This perspective is com-

monly known as the frequentist view, wherein probabilities are confined to discussions of random

variables—quantities that can meaningfully fluctuate across a sequence of repeated experiments.

In recent years, there has been a shift in the understanding of probability, acknowledging that the

mathematical principles of probability extend beyond calculating frequencies of random variables.

These principles are now recognized as inherently valid rules of logic for making inferences about

any given proposition or hypothesis. This more robust perspective, often referred to as Probability

Theory as Logic or Bayesian probability theory, is gaining prominence in physics and astronomy. The

Bayesian approach enables the direct computation of the probability associated with a specific theory

or a particular value of a model parameter—issues that the conventional statistical approach can only

indirectly address through the use of random variable statistics. The two distinct approaches to sta-

tistical inference, along with their underlying definitions of probability, are summarized in Table 1.1.

This lecture will predominantly delve into the concepts of Bayesian statistics.
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Approach Frequentist Bayesian
Definition of Probability Probability is seen as the long-

run relative frequency of an
event occurring in repeated, in-
dependent experiments. It is
based on objective, observable
frequencies.

Probability is seen as a mea-
sure of belief or certainty about
an event. It incorporates both
prior knowledge and new evi-
dence to update beliefs.

Parameters Parameters are fixed, unknown
values. Inference is about
estimating these fixed values
based on observed data.

Parameters are considered ran-
dom variables with probabil-
ity distributions. Inference in-
volves updating prior distribu-
tions with observed data to ob-
tain posterior distributions.

Subjectivity It is considered an objective
approach, as probabilities are
based on observed frequencies,
and conclusions are not influ-
enced by subjective beliefs.

Acknowledges subjectivity, as
it allows the incorporation of
prior beliefs. Bayesian infer-
ence is sensitive to the choice
of priors.

Hypothesis Testing Emphasizes hypothesis testing,
focusing on rejecting or failing
to reject null hypotheses based
on the observed data.

While hypothesis testing is
possible, Bayesian inference
often focuses on estimating pa-
rameters and updating beliefs
rather than strict hypothesis
testing.

Prior Information Typically does not incorporate
prior beliefs or subjective in-
formation about parameters.

Incorporates prior information,
allowing researchers to include
existing knowledge or beliefs
about parameters in the analy-
sis.

Table 1.1: Frequentist and Bayesian approaches to probability.

1.1.1 Deductive logic versus plausible reasoning

A schematic representation of deductive logic is show in Figure 1.1(a): given a cause, we can work

out its consequences. The sort of reasoning used in pure mathematics is of this type: that is, we can

derive many complicated and useful results as the logical consequence of a few well-defined axioms.

Most scientists, however, face the reverse of the above situation: Given that certain effects have been

observed, what is (are) the underlying cause(s)? This type of question has to do with inductive logic,

or plausible reasoning, and is illustrated in Figure 1.1(b); the greater complexity of this diagram is
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Figure 1.1: A schematic representation of (a) deductive logic, or pure mathematics, and (b) plausible
reasoning, inductive logic.

designed to indicate that it is a much harder problem. The most we can hope to do is to make the best

inference based on the experimental data and any prior knowledge that we have available, reserving

the right the revise our position if new information comes to light.

1.1.2 Bayes’s Theorem

The goal of Bayesian probability theory is to provide an extension of logic to handle situations where

we have incomplete information so we may arrive at the relative probabilities of competing hypothe-

ses for a given state of information. The main idea in Bayesian probability is that we always based

our believes on some prior information which could be assigned a conditional probability as shown in

Figure 1.2. The operations for manipulating probabilities that follow from the desiderata are the sum

and the product rules.

Sum Rule

P (A|B) + P (A|B) = 1. (1.1)
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Figure 1.2: A conditional probability of event A assuming that event B occurs.

Product Rule

P (A ∩ B|C) = P (A|C)P (B|A ∩ C)

= P (B|C)P (A|B ∩ C), (1.2)

where conjoint probability or conditional probability P (A|B) is given by

P (A ∩ B) = P (A) · P (B|A)

= P (B) · P (A|B), (1.3)

or,

P (A|B) =
P (A ∩ B)

P (B)
. (1.4)

Since in reality we justify our probability based on some prior information which is presumed to be

valid. Hence,

P (A) ≡ P (A|I), (1.5)

where I is proposition regarding our prior information and P (A|I). The Bayes’s theorem is based on
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the product rule and is given by

P (A|B, I) ≡ P (A|B ∩ I) =
P (A|I) · P (B|A, I)

P (B|I)
. (1.6)

From here on, we shall use notation P (A,B) ≡ P (A ∩B). The Bayes’s theorem in Eq. (1.6) has far

greater application in science if we replace the abstract notation A and B with something physically

more meaningful;

In many scientific applications, we have access to some data D that we want to use to make infer-

ences about the world around us. Most often, we want to interpret these data in light of an underlying

model M that can make predictions about the data we expect to see as a function of some parame-

ters ΘM of that particular model. We can combine these pieces together to estimate the probability

P (D|ΘM ,M) that we would actually see that dataDwe have collected conditioned on (i.e. assuming)

a specific choice of parameters ΘM from our model M . In other words, assuming our model M is

right and the parametersΘM describe the data, what is the likelihood P (D|ΘM ,M) of the parameters

ΘM based on the observed data D? Assuming different values ofΘM will give different likelihoods,

telling us which parameter choices appear to best describe the data we observe.

In Bayesian inference, we are interested in inferring the flipped quantity, P (ΘM |D,M). This

describes the probability that the underlying parameters are actually ΘM given our data D and as-

suming a particular model M . By using factoring of probability, we can relate this new probability

P (ΘM |D,M) to the likelihood P (D|ΘM ,M) described above as

P (ΘM |D,M)P (D|M) = P (ΘM ,D|M) = P (D|ΘM ,M)P (ΘM |M) (1.7)

where P (ΘM ,D|M) represents the joint probability of having an underlying set of parameters ΘM

that describe the data and observing the particular set of dataDwe have already collected. Rearranging

this equality into a more convenient form gives us Bayes’ Theorem:

P (ΘM |D,M) =
P (D|ΘM ,M)P (ΘM |M)

P (D|M)
, (1.8)
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where ΘM ≡ proposition asserting the truth of the model parameters

M ≡ proposition representing our model or prior information

D ≡ proposition representing data

In the language of Bayesian statistics, these terms are

P (ΘM |M) ≡ prior probability of the model parameters (prior, π(ΘM |M))

P (D|ΘM ,M) ≡ probability of obtaining the data D, ifΘM andM are true

(also called the likelihood function L(ΘM))

P (ΘM |D,M) ≡ posterior probability ofΘM (posterior P(Θ))

P (D|M) is called evidence which is sometimes ignored in the calculation as a normalization factor.

The normalization factor will ensure that

∑
i

P (ΘM |D,M) = 1. (1.9)

In the case where we have a continuous hypothesis space, the normalization condition will be

∫
dΘMP (ΘM |D,M) = 1. (1.10)

In summary, we could write our Bayesian’s theorem as

P (Hypothesis|Data, Prior Information) ∝ P (Data|Hypothesis, Prior Information)

× P (Hypothesis|Prior Information)

(1.11)

or

Posterior ∝ Likelihood × Prior
(1.12)
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Figure 1.3: An illustration of Bayes’ Theorem. The posterior probability P(Θ) (black) of our model
parameters Θ is based on a combination of our prior beliefs π(Θ) (blue) and the likelihood L(Θ)
(red), normalized by the overall evidence Z =

∫
π(Θ)L(Θ)dΘ (purple) for our particular model.

Example 1.1 Monty Hall Problem

• Monty shows you three closed doors and tells you that there is a prize behind each door: one

prize is a car the other two are less valuable prizes like peanut butter and fake finger nails. The

prizes are arranged at random.

• The object of the game is to guess which door has the car. If you guess right, you get to keep

the car.

• You pick a door, which we will call Door A. We’ll call the other doors B and C.

• Before opening the door you chose, Monty increases the suspense by opening either Door B

or C, whichever does not have the car. (If the car is actually behind Door A, Monty can safely

open B or C, so he chooses one at random.)

• ThenMonty offers you the option to stick with your original choice or switch to the one remain-

ing unopened door.
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The question is, should you “stick” or “switch” or does it make no difference? Most people have a

strong intuition that it makes no difference. There are two doors left, they reason, so the chance that

the car is behind Door A is 50%. But that is wrong. In fact, the chance of winning if you stick with

Door A is only 1/3; if you switch, your chances are 2/3.

Prior Likelihood PosteriorChoice
π(Θ) L(Θ)

π(Θ) · L(Θ)
P(Θ|D)

A 1/3 1/2 1/6 1/3
B 1/3 0 0 0
C 1/3 1 1/3 2/3

Table 1.2: A Monty Hall problem we the contestant chose A initially and Monty showed that B is
empty.

Filling the priors is easy because we are told that the prizes are arranged at random, which suggests

that the car is equally likely to be behind any door. Figuring out the likelihoods takes some thought,

but with reasonable care we can be confident that we have it right:

• If the car is actually behind A, Monty could safely open Doors B and C. So the probability that

he choose B is 1/2.

• If the car is actually behind B, Monty has to open door C, so the probability that he opens door

B is 0.

• If the car is actually behind C, Monty opens B with probability 1.

The sum of third coloumn is 1/2. Dividing through yields P (A|D) = 1/3 and P (C|D) = 2/3.

So you better off switching.

■

1.1.3 Marginalisation

Suppose that we have a proposition B with its negative counterpart B̄. From the sum rule, Eq. (1.1),

P (A,B|I) + P (A,B|I) = P (A|I). (1.13)
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This is calledmarginalisation. It could be further generalized for an exhaustive andmutually exclusive

set of discrete or continuous propositions. For example, in the case of a discrete exhaustive and

mutually exclusive proposition space, Bi’s,

P (A,B1|I) + P (A,B2|I) + . . .+ P (A,BN |I) = 1, (1.14)

or a continuous proposition space,

∫
dBP (A,B|I) = P (A|I). (1.15)

Marginalisation is very powerful device in data analysis because it enables us to deal with nuisance

parameters; that is, quantities which necessarily enter the analysis but are of no interest. The unwanted

background signal present in many experimental measurements, and instrumental parameters which

are difficult to calibre, are examples of nuisance parameters.

From marginalisation, we could calculate the evidence as

Z =

∫
dΘMπ(ΘM)L(ΘM) (1.16)

1.1.4 What are Posteriors Good For?

Above, I described how Bayes’ Theorem is able to combine our prior beliefs and the observed data

into a new posterior estimate P(Θ) ∝ L(Θ)π(Θ). This, however, is only half of the problem. Once

we have the posterior, we need to then use it to make inferences about the world around us. In general,

the ways in which we want to use posteriors fall into a few broad categories:

1. Making educated guesses: make a reasonable guess at what the underlying model parameters

are.

2. Quantifying uncertainty: provide constraints on the range of possible model parameter values.

3. Generating predictions: marginalize over uncertainties in the underlying model parameters to

predict observables or other variables that depend on the model parameters.
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4. Comparing models: use the evidences from different models to determine which models are

more favorable.

In order to accomplish these goals, we are often more interested in trying to use the posterior

to estimate various constraints on the parameters Θ themselves or other quantities f(Θ) that might

be based on them. This often depends on marginalizing over the uncertainties characterized by our

posterior (via the likelihood and prior). The evidence Z , for instance, is again just the integral of the

likelihood and the prior over all possible parameters:

Z =

∫
L(Θ)π(Θ)dΘ ≡

∫
P̃(Θ)dΘ (1.17)

where P̃(Θ) ≡ L(Θ)π(Θ) is the unnormalized posterior.

Likewise, if we are investigating the behavior of a subset of “interesting” parameters Θint from

Θ = {Θint,Θnuis}, we want to marginalize over the behavior of the remaining “nuisance” parameters

Θnuis to see how they can impact Θint. This process is pretty straightforward if the entire posterior

overΘ is known:

P(Θint) =

∫
P(Θint,Θnuis) dΘnuis =

∫
P(Θ)dΘnuis (1.18)

Other quantities can generally be derived from the expectation value of various parameter-dependent

functions f(Θ) with respect to the posterior:

EP [f(Θ)] ≡
∫
f(Θ)P(Θ)dΘ∫

P(Θ)dΘ
=

∫
f(Θ)P̃(Θ)dΘ∫

P̃(Θ)dΘ
=

∫
f(Θ)P(Θ)dΘ (1.19)

since
∫
P(Θ)dΘ = 1 by definition and P̃(Θ) ∝ P(Θ). This represents a weighted average of f(Θ),

where at each value Θ we weight the resulting f(Θ) based on to the chance we believe that value is

correct.

Taken together, we see that in almost all cases we are more interested in computing integrals over

the posterior rather than knowing the posterior itself. To put this another way, the posterior is rarely

ever useful on its own; it mainly becomes useful by integrating over it.

This distinction between estimating expectations and other integrals over the posterior versus esti-
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mating the posterior in-and-of-itself is a key element of Bayesian inference. This distinction is hugely

important when it comes to actually performing inference in practice, since it is often the case that we

can get an excellent estimate of EP [f(Θ)] even if we have an extremely poor estimate of P(Θ) or

P̃(Θ).

More details are provided below to further illustrate how the particular categories described above

translate into particular integrals over the (unnormalized) posterior. An example is shown in Fig-

ure 1.4.

Making Educated Guesses

One of the core tenets of Bayesian inference is that we don’t know the true model M∗ or its true

underlying parameters Θ∗ that characterize the data we observe: the model M we have is almost

always a simplification of what is actually going on. If we assume that our current modelM is correct,

however, we can try to use our posterior P(Θ) to propose a point estimate Θ̂ that we think is a pretty

good guess for the true valueΘ∗.

What exactly counts as “good”? This depends on exactly what we care about. In general, we

can quantify “goodness” by asking the opposite question: how badly are we penalized if our estimate

Θ̂ ̸= Θ∗ is wrong? This is often encapsulated through the use of a loss function L(Θ̂|Θ∗) that

penalizes us when our point estimate Θ̂ differs from Θ∗. An example of a common loss function is

L(Θ̂|Θ∗) = |Θ̂−Θ∗|2 (i.e. squared loss), where an incorrect guess is penalized based on the square

of the magnitude of the separation between the guess Θ̂ and the true valueΘ∗.

Unfortunately, we don’t know what the actual value of Θ∗ is to evaluate the true loss. We can,

however, do the next best thing and compute the expected loss averaged over all possible values of

Θ∗ based on our posterior:

LP(Θ̂) ≡ EP

[
L(Θ̂|Θ)

]
=

∫
L(Θ̂|Θ)P(Θ)dΘ (1.20)

A reasonable choice for Θ̂ is then the value that minimizes this expected loss in place of the actual
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Figure 1.4: A “corner plot” showing an example of how posteriors are used in practice. Each of the
top panels shows the 1-D marginalized posterior distribution for each parameter (grey), along with
associated median point estimates (red) and 68% credible intervals (blue). Each central panel shows
the 10%, 40%, 65%, and 85% credible regions for each 2-D marginalized posterior distribution. See
§1.1.4 for additional details.
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(unknown) loss:

Θ̂ ≡ argmin
Θ′

[LP(Θ
′)] (1.21)

where argmin indicates the value (argument) ofΘ′ that minimizes the expected loss LP(Θ
′).

While this strategy can work for any arbitrary loss function, solving for Θ̂ often requires using

numerical methods and repeated integration over P(Θ). However, analytic solutions do exist for

particular loss functions. For example, it is straightforward to show (and an insightful exercise for the

interested reader) that the optimal point estimate Θ̂ under squared loss is simply the mean.

Quantifying Uncertainty

In many cases we are not just interested in computing a prediction Θ̂ for Θ∗, but also constraining a

region C(Θ) of possible values within which Θ∗ might lie with some amount of certainty. In other

words, can we construct a region CX such that we believe there is anX% chance that it containsΘ∗?

There are many possible definitions for this credible region. One common definition is the region

above some posterior threshold PX where X% of the posterior is contained, i.e. where

∫
Θ∈CX

P(Θ)dΘ =
X

100
(1.22)

given

CX ≡ {Θ : P(Θ) ≥ PX} (1.23)

In other words, wewant to integrate our posterior over allΘwhere the valueP(Θ) > PX is greater

than some threshold PX , where PX is set so that this integral encompasses X% of the full posterior.

Common choices for X include 68% and 95% (i.e. “1-sigma” and “2-sigma” credible intervals).

In the special case where our (marginalized) posterior is 1-D, credible intervals are often defined

using percentiles rather than thresholds, where the location xp of the pth percentile is defined as

∫ xp

−∞
P(x)dx =

p

100
(1.24)

We can use these to define a credible region [xlow, xhigh] containing Y% of the data by taking xlow =
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x(1−Y )/2 and xhigh = x(1+Y )/2. While this leads to asymmetric thresholds and does not generalize to

higher dimensions, it has the benefit of always encompassing the median value x50 and having equal

tail probabilities (i.e. (1− Y )/2% of the posterior on each side).

In general, when referring to “credible intervals” throughout the text the percentile definition

should be assumed unless explicitly stated otherwise.

Making Predictions

In addition to trying to estimate the underlying parameters of our model, we often also want to make

predictions of other observables or variables that depend on our model parameters. If we think we

know the underlying true model parameters Θ∗, then this process is straightforward. Given that we

only have access to the posterior distribution P(Θ) over possible values Θ∗ could take, however, to

predict what will happen we will need to marginalize over this uncertainty.

We can quantify this intuition using the posterior predictive P (D̃|D), which represents the prob-

ability of seeing some new data D̃ based on our existing data D:

P (D̃|D) ≡
∫

P (D̃|Θ)P (Θ|D)dΘ ≡
∫

L̃(Θ)P(Θ)dΘ = EP

[
L̃(Θ)

]
(1.25)

In other words, for hypothetical data D̃, we want to compute the expected value of the likelihood L̃(Θ)

over all possible values ofΘ based on the current posterior P(Θ).

Comparing Models

One final point of interest in many Bayesian analyses is trying to investigate whether the data particu-

larly favors any of the model(s) we are assuming in our analysis. Our choice of priors or the particular

way we parameterize the data can lead to substantial differences in the way we might want to interpret

our results.

We can compare two models by computing the Bayes factor:

R1
2 ≡

P (M1|D)
P (M2|D)

=
P (D|M1)P (M1)

P (D|M2)P (M2)
≡ Z1

Z2

π1
π2

(1.26)
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Figure 1.5: (a) Part of the X-ray diffraction data from a zeolite. (b) The calibrated profile, or resolu-
tion function, of the Bragg peaks. (c) The logarithm of the posterior pdf for the number of lines. (d)
The inferred amplitudes and positions of the Bragg peaks, and their estimated error-bars.

where ZM is again the evidence for model M and πM is our prior belief that M is correct relative

to the competing model. Taken together, the Bayes factor R tells us how much a particular model is

favored over another given the observed data, marginalizing over all possible values of the underlying

model parametersΘM , and our previous relative confidence in the model.

Again, note that computing ZM requires computing the integral
∫
P̃(Θ)dΘ of the unnormalized

posterior P̃(Θ) over Θ. Combined with the other examples outlined in this section, it is clear that

many common use cases in Bayesian analysis rely on computing integrals over the (possibly unnor-

malized) posterior.

1.2 Maximum Likelihood Estimator

Suppose that we are fitting N data points (xi, yi), i = 1, . . . , N , to a model that has M adjustable

parameters θj, j = 1, . . . ,M . With our notation, we shall use lower-case letters, x, for variables and

model parameters while upper-case letters, X , are reserved for propositions. The model predicts a
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functional relationship between the measured independent and dependent variables,

yth(x) = yth(x|θ1θ2 . . . θM) (1.27)

where the notation indicates the dependence on the parameters explicitly on the right-hand side, fol-

lowing the vertical bar.

What, exactly, do we want to minimize to get fitted values for the θj’s? The first thing that comes

to mind is the familiar least-square fit,

N∑
i=1

[
yi − yth(xi|θ1θ2 . . . θM)

]2
. (1.28)

1.2.1 Uncorrelated data points

By minimising Eq. (1.28), we would obtain the optimal set of parameters that fits the data best.

However, we have not taken the uncertainty in measurement into account. With the measurement

uncertainty, we assume that each data point yi has a measurement error that is independently ran-

dom and distributed as a normal (Gaussian) distribution around the “true” model y(x). And sup-

pose that the standard deviation σi for the point (xi, yi). Hence for the data D with data points

(xi, yi, σi), i = 1, 2, . . . , N and parametersΘM with parameters θj, j = 1, 2, . . .M .

L(D|ΘM) =
N∏
i=1

{
exp

[
− 1

2

(
(yi − yth(xi))

2

σi

)]
∆y

}
. (1.29)

Notice that there is a factor of∆y in each term in the product. As often as not, we take a constant (i.e.

∆y) as non-informative prior. The most probable model, then, is the one that maximizes Eq. (1.29)

or, equivalently, minimizes the negative of its logarithm,

[
N∑
i=1

[
yi − yth(xi)

]2
2σ2

i

]
−N log∆y. (1.30)
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Since N and ∆y are all constants, minimising this equation is equivalent to minimising Eq. (1.28).

We define chi-square as

χ2 ≡
N∑
i=1

(
yi − yth(xi|θ1θ2 . . . θM)

σi

)2

. (1.31)

To whatever extent the measurement errors actually are normally distributed, the quantity χ2 is

correspondingly a sum of N squares of normally distributed quantities, each normalised to unit vari-

ance. Once we have adjusted the a0a1 . . . aM−1 to minimise the value of χ2, the terms in the sum

are not all statistically independent. Hence the likelihood function in terms of chi-squared maximum

likelihood estimator is given by

L(ΘM) ≡ L(ΘM |M) = L0 exp
(
−1

2
χ2

)
, (1.32)

where L0 is a constant which shall be disregarded in calculation. We shall define the term call log-

likelihood function;

L ≡ logL = L0 −
1

2
χ2. (1.33)

The log-likelihood function will normally be calculated due to more numerically stable than the like-

lihood function.

1.2.2 Correlated data points

Everything we have done so far has assumed that the error associated with each datum is independent

of the errors for the others, and that the Gaussian describing our knowledge of the error. In general,

however, the errors can have different variances, and could be correlated. For correlated data points,

the value of chi-square will be

χ2 = (y− yth(x))T ·Σ−1
D · (y− yth(x)), (1.34)
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where y is the data column vector and yth(x) is the model prediction at x;

y =



y1

y2

...

yN


, yth(x) =



yth(x1)

yth(x2)

...

yth(xN)


. (1.35)

ΣD is called data covariance matrix; which is given by

ΣD =



σ11 σ12 σ13 · · · σ1N

σ21 σ22 σ23 · · · σ2N

...
...

... . . . ...

σN1 σN2 σN3 · · · σNN


. (1.36)

If the errors are independent,ΣDwill be diagonal, with entries equal to σ2
i and the chi-square is reduced

to Eq. (1.31).

1.3 Parameter Estimation

The posterior encodes our inference about the parameter in the model, given the data and the relevant

background information. Often; however, we wish to summarise this with just two numbers: the best

estimate and a measure of its reliability. Since the probability (density) associated with any particular

value of the parameter is a measure of how much we believe that it lies in the neighborhood of that

point, our best estimate is given by the maximum of the posterior pdf.

18



1 BAYESIAN STATISTICS 1.3. PARAMETER ESTIMATION

1.3.1 One-parameter model

If we denote the quantity of interest by x, with a posterior pdf P(Θ|D,M), then the best estimate of

its value θ0 is given by the condition
dP
dθ

∣∣∣∣
θ=θ0

= 0. (1.37)

We should also check the sign of the second derivative to ensure that θ0 represents a maximum rather

than a minimum (or a point of reflection):

d2P
dθ2

∣∣∣∣
θ0

< 0. (1.38)

To obtain a measure of the reliability of this best estimate, we need to look at the width or spread

of the posterior pdf about θ0. When considering the behaviour of any function in the neighbourhood

of a particular point, it is often helpful to carry out a Taylor series expansion; this is simply a standard

tool for locally approximating a complicated function by a low-order polynomial. Rather than dealing

directly with the posterior pdf P , which is a ‘peaky’ and positive function, it is better to work with

logarithm L,

L = log
[
P(Θ|D,M)

]
, (1.39)

since this varies much more slowly with θ. Expanding L about the point θ = θ0, we have

L = L(θ0) +
1

2

d2L
d θ2

∣∣∣∣
θ0

(θ − θ0)
2 + . . . , (1.40)

where the best estimate of θ is given by the condition

dL
d θ

∣∣∣∣
θ0

= 0. (1.41)

The first term in the Taylor series, L(θ0), is a constant and tells us nothing about the shape of the

posterior pdf. The linear term is missing because we are expanding about the maximum. The quadratic

term is, therefore, the dominant factor determining the width of the posterior pdf and plays a central
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role in the reliability analysis. Ignoring all the higher-order contributions, the exponential yields

P(Θ|D,M) ≈ P0 exp

[
1

2

d2L
d θ2

∣∣∣∣
θ0

(θ − θ0)
2

]
, (1.42)

where P0 is a normalisation constant. This is the normal distribution,

P (θ|µ, σ) = 1√
2πσ

exp
[
−(θ − µ)2

2σ2

]
, (1.43)

where µ ≡ θ0 and

σ ≡

(
−d2L
d θ2

∣∣∣∣
θ0

)−1/2

. (1.44)

Our inference about the quantity of interest is conveyed very precisely, therefore, by the statement

θ = θ0 ± σ. (1.45)

1.3.2 Multi-parameter model

Similar to the previous section where we give the mean, µ, and the standard deviation, σ, as the best

estimate of the parameter θ. We will turn on attention to multi-parameter model with the posterior,

P(Θ|D,M), (1.46)

whereΘ is the parameter vector;

Θ =



θ1

θ2

...

θN


. (1.47)

If we denote the best estimate of Θ by Θ0 which gives the maximum value of the posterior. The

maximum of the posterior is given by

∇ΘP = 0. (1.48)
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Or, equivalently, by solving simultaneous equations,

∂P
∂θi

∣∣∣∣
Θ0

= 0, (1.49)

where i = 1, 2, . . . up to the number of parameters to be inferred. In case of a two-parameter model,

where we have parameter x ≡ θ1 and y ≡ θ2 and the posterior is maximum at (x0, y0) ≡ (θ1,0, θ2,0)

given the conditions;
∂L

∂x

∣∣∣∣
x0,y0

= 0 and
∂L

∂y

∣∣∣∣
x0,y0

= 0, (1.50)

where L = log [P ({x, y}|D,M)].

To obtain a measure of the reliability of the best estimate, we need to look at the spread of the

two-dimensional posterior pdf about (x0, y0). By using a Taylor’s expansion,

L = L(x0, y0) +
1

2

[
∂2L

∂ x2

∣∣∣∣
x0,y0

(x− x0)
2 +

∂2L

∂ y2

∣∣∣∣
x0,y0

(y − y0)
2 (1.51)

+2
∂2L

∂ x∂ y

∣∣∣∣
x0,y0

(x− x0)(y − y0)

]
+ . . . . (1.52)

Similar to the one-parameter model, the posterior is approximately

P ({x, y}|D, I) ≈ const. exp
[
−1

2
Q

]
, (1.53)

where

Q =

(
x− x0 y − y0

)
·

 A C

C B

 ·

 x− x0

y − y0

 . (1.54)

The component of the 2 × 2 symmetric matrix in the middle are given by the second derivatives

of L, evaluated at the maximum (x0, y0):

A =
∂2L

∂ x2

∣∣∣∣
x0,y0

, B =
∂2L

∂ y2

∣∣∣∣
xO,yO

, C =
∂2L

∂ x∂ y

∣∣∣∣
x0,y0

(1.55)

The contour of Q in x–y plane; within our quadratic approximation is shown in the Figure. 1.6.
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that there are now four second (partial) derivatives to deal with, instead of only one!
We have, in fact, reduced this tally of terms to three by using the equality of the mixed
derivatives: ∂ 2L/∂X ∂ Y = ∂ 2L/∂Y ∂X . The first term in the Taylor series, L(Xo, Yo),
is a constant and tells us nothing about the shape of the posterior pdf. The two linear
terms, which would be proportional toX−Xoand Y −Yo, are missing because we are
expanding about the maximum (as indicated by eqn 3.16). The three quadratic terms
are, therefore, the dominant factors determining the width of the posterior pdf, and play
a central rôle in the reliability analysis; let us study them more closely.
To aid the generalization of this discussion to the case of several variables a lit-

tle later, let us rewrite the quadratic part of eqn (3.17) in matrix notation; calling the
quantity in the square brackets Q, we have

Q =

(

X−Xo Y −Yo
)

(

A C

C B

)(

X−Xo

Y −Yo

)

, (3.18)

where the components of the 2 × 2 symmetric matrix in the middle are given by the
second derivatives of L, evaluated at the maximum (Xo, Yo):

A =
∂ 2L

∂X2

∣

∣

∣

∣

Xo,Yo

, B =
∂ 2L

∂ Y 2

∣

∣

∣

∣

Xo,Yo

, C =
∂ 2L

∂X ∂Y

∣

∣

∣

∣

Xo,Yo

. (3.19)

Figure 3.6 shows a contour ofQ in theX – Y plane; within our quadratic approximation,
it is also a line along which the posterior pdf is constant. It is an ellipse, centred at
(Xo, Yo), the orientation and eccentricity of which are determined by the values of A,
B and C; for a given contour-level (Q = k), they also govern its size. The directions
of the principal axes formally correspond to the eigenvectors of the second-derivative

Fig. 3.6 The contour in the X–Y parameter space along which Q = k, a constant. It is an el-
lipse, centred at (Xo, Yo), the characteristics of which are determined by the eigenvalues λ and
eigenvectors e of the second-derivative matrix defined in eqns (3.18)–(3.20).

Figure 1.6: The contour in x–y parameter space along with Q = k, a constant centred on (xO, yO).
The characteristics of which are determined by the eigenvalues λ and the eigenvectors e of the second-
derivatives.
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Chapter 2
Metropolis-Hastings Algorithm

In recent decades, there has been a significant enhancement in the quality and quantity of available

data, attributed to advancements that enable faster and more cost-effective collection and storage.

Concurrently, the technology facilitating the accumulation of extensive datasets has resulted in a sub-

stantial boost in computational power and resources dedicated to their analysis.

Collectively, these advancements have facilitated the investigation of increasingly intricate models

through techniques capable of leveraging enhanced computational capabilities. Consequently, there

has been a substantial increase in the number of published works employingMonte Carlo methods.

These methods utilize a combination of numerical simulation and random number generation to nav-

igate these complex models.

Among the Monte Carlo methods, Markov Chain Monte Carlo (MCMC) has gained signifi-

cant popularity. MCMC methods are attractive due to their straightforward and intuitive approach,

enabling the simulation of values from an unknown distribution. Furthermore, these simulated values

can be utilized for subsequent analyses, making MCMC methods applicable across a diverse range of

domains.

2.1 Approximating Posterior Integrals with Grids

I now want to investigate methods for estimating posterior integrals. While in some cases (e.g., con-

jugate priors) these can be computed analytically, this is not true in general. To properly estimate
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quantities such as those outlined in §1.1.4 therefore requires the use of numerical methods.

To start, I will first focus on the case where our integral over Θ is 1-D. In that case, we can

approximate it using standard numerical techniques such as a Riemann sum over a discrete grid of

points:

EP [f(Θ)] =

∫
f(Θ)P(Θ)dΘ ≈

n∑
i=1

f(Θi)P(Θi)∆Θi (2.1)

where

∆Θi = Θj+1 −Θj (2.2)

is simply the spacing between the set of j = 1, . . . , n+ 1 points on the underlying grid and

Θi =
Θj+1 +Θj

2
(2.3)

is just defined to be themid-point betweenΘj andΘj+1.1 As shown in Figure 2.1, this approach is akin

to trying to approximate the integral using a discrete set of n rectangles with heights of f(Θi)P(Θi)

and widths of ∆Θi.

This idea can be generalized to higher dimensions. In that case, instead of breaking up the integral

into n 1-D segments, we instead can decompose it into a set of n N-D cuboids. The contribution of

each of these pieces is then proportional to the product of the “height” f(Θi)P(Θi) and the volume

∆Θi =
d∏

j=1

∆Θi,j (2.4)

where ∆Θi,j is the width of the ith cuboid in the jth dimension. See Figure 2.1 for a visual represen-

tation of this procedure.

Substituting P(Θ) = P̃(Θ)/Z into the expectation value and replacing any integrals with their

grid-based approximations then gives:

EP [f(Θ)] =

∫
f(Θ)P(Θ)dΘ∫

P(Θ)dΘ
=

∫
f(Θ)P̃(Θ)dΘ∫

P̃(Θ)dΘ
≈
∑n

i=1 f(Θi)P̃(Θi)∆Θi∑n
i=1 P̃(Θi)∆Θi

(2.5)

1ChoosingΘi to be one of the end-points gives consistent behavior (see §2.1.3) as the number of grid points n → ∞
but generally leads to larger biases for finite n.
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2 METROPOLIS-HASTINGS ALGORITHM 2.1. APPROXIMATING POSTERIOR INTEGRALS WITH GRIDS

Figure 2.1: An illustration of how to approximate posterior integrals using a discrete grid of points. We
break up the posterior into contiguous regions defined by a positionΘi (e.g., an endpoint or midpoint)
with corresponding posterior density P(Θi) and volume∆Θi over a grid with i = 1, . . . , n elements.
Our integral can then be approximated by adding up each of these regions proportional to the posterior
mass P(Θi)×∆Θi contained within it. In 1-D (top), these volume elements∆Θi correspond to line
segments while in 2-D (middle), these correspond to rectangles. This can be generalized to higher
dimensions (bottom), where we instead used N-D cuboids. See §2.1 for additional details.

Note the denominator is now an estimate for the evidence:

Z =

∫
P̃(Θ)dΘ ≈

n∑
i=1

P̃(Θi)∆Θj (2.6)
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This substitution of the unnormalized posterior P̃(Θ) for the posterior P(Θ) is a crucial part of com-

puting expectation values in practice since we can compute P̃(Θ) = L(Θ)π(Θ) directly without

knowing Z .

2.1.1 The Curse of Dimensionality

While this approach is straightforward, it has one immediate and severe drawback: the total number

of grid points increases exponentially as the number of dimensions increases. For example, assuming

we have roughly k ≥ 2 grid points in each dimensions, the total number of points n in our grid scales

as

n ∼
d∏

j=1

k = kd (2.7)

This means that even in the absolute best case where k = 2, we have 2d scaling.

This awful scaling is often referred to as the curse of dimensionality. This exponential depen-

dence turns out to be a generic feature of high-dimensional distributions (i.e. posteriors of models

with larger numbers of parameters).

2.1.2 Effective Sample Size

Apart from this exponential scaling of dimensionality, there is a more subtle drawback to using grids.

Since we do not know the shape of the distribution ahead of time, the contribution of each portion of

the grid (i.e. each N-D cuboid) can be highly uneven depending on the structure of the grid. In other

words, the effectiveness of this approach not only depends on the number of grid points n but also

where they are allocated. If we do not specify our grid points well, we can end up with many points

located in regions where P̃(Θ) and/or f(Θ)P̃(Θ) is relatively small. This then implies that their

respective sums will be dominated by a small number of points with much larger relative “weights”.

Ideally, we would want to increase the resolution of the grid in regions where the posterior is large

and decrease it elsewhere to mitigate this effect.

Note that our use of the term “weights” in the preceding paragraph is quite deliberate. Looking

back at our original approximation, the form of equation (2.5) is quite similar to one which might
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be used to compute a weighted sample mean of f(Θ). In that case, where we have n observations

{f1, . . . , fn} with corresponding weights {w1, . . . , wn}, the weighted mean is simply:

f̂mean ≡
∑n

i=1 wifi∑n
i=1 wi

(2.8)

Indeed, if we define

fi ≡ f(Θi), wi ≡ P̃(Θi)∆Θi (2.9)

then the connection between the weighted sample mean in equation (2.8) and the expectation value

from our grid in equation (2.5) becomes explicit:

EP [f(Θ)] ≈
∑n

i=1 f(Θi)P̃(Θi)∆Θi∑n
i=1 P̃(Θi)∆Θi

≡
∑n

i=1 wifi∑n
i=1 wi

(2.10)

Thinking about our grid as a set of n samples also allows us to consider an associated effective

sample size (ESS) neff ≤ n. The ESS encapsulates the idea that not all of our samples contribute

the same amount of information: if we have n samples that are very similar to each other, we expect

to have a substantially worse estimate than if we have n samples that are quite different. This is

because the information in correlated samples are at least partially redundant with one another, with

the amount of redundancy increasing with the strength of the correlation: while two independent

samples provide completely unique information about the distribution and no information about each

other, two correlated samples instead provide some information about each other at the expense of the

underlying distribution.

Returning to grids, this correspondence means that we can in theory come up with an estimate

of the expectation value EP [f(Θ)] that is at least as good as the one we might currently have using

a smaller number neff ≤ n of grid points if we were able to allocate them more efficiently. This

distinction matters because errors on our estimate of the expectation value generally scale as a function

of neff rather than n. For instance, the error on the mean typically goes as∝ n
−1/2
eff rather than∝ n−1/2.

We can quantify the ideas behind the ESS as discussed above by introducing a formal definition:

neff ≡
(
∑n

i=1 wi)
2∑n

i=1 w
2
i

(2.11)
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Figure 2.2: An example of how changing the spacing (volume elements) of the grid can dramatically
affect its associated estimate of posterior integrals. On a toy 2-D posterior P(Θ), simply changing
the spacing of the associated 2-D 30 × 30 grid dramatically affects the effective sample size (ESS)
(see §2.1.2). Differences between poor spacing (left), uniform spacing (middle), and optimal spacing
(right) leads to an order of magnitude difference in the ESS, as highlighted by the distribution of
weights (bottom) associated with the volume elements of each grid. See §2.1.2 for additional details.

In line with our intuition, the best case under this definition is one where all the weights are equal

(wi = w):

nbest
eff =

(
∑n

i=1 wi)
2∑n

i=1 w
2
i

=
(nw)2∑n
i=1 w

2
=

n2w2

nw2
= n (2.12)

Likewise, the worst case is one where all the weight is concentrated around a single sample (wi = w

for i = j and wi = 0 otherwise):

nworst
eff =

(
∑n

i=1 wi)
2∑n

i=1 w
2
i

=
(w)2

w2
= 1 (2.13)

This former situation (with nbest
eff ) would be the case where each of the elements of our grid all have

roughly the same contribution to the integral, while the latter (with nworst
eff ) would be where the entire

integral is essentially contained in just one of ournN-D cuboid regions. An illustration of this behavior

is shown in Figure 2.2.
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Figure 2.3: An illustration of how grid-based estimates can be convergent (i.e. converge to a single
value as the number of grid points increases) but not consistent (i.e. the value it converges to is not the
correct answer). Our toy 2-D unnormalized posterior P̃(Θ) has twomodes that arewell-separatedwith
a total evidence of Z = 200. If we are not aware of the second mode, we might define a grid region
that only encompasses a subset of the entire parameter space (left). While increasing the resolution of
the grid within this region allows the estimated Z to converge to an single answer (left to right), this
is not equal to the correct answer of Z = 200 because we have neglected the contribution of the other
component (right). See §2.1.3 for additional details.

2.1.3 Convergence and Consistency

Now that I have outlined the relationship between the structure of our grid and the ESS, I want to

examine two final issues: convergence and consistency. Convergence is the idea that, while our

estimates using n samples (grid points) might be noisy, it approaches some fiducial value as n → ∞:

lim
n→∞

∑n
i=1 f(Θi)P̃(Θi)∆Θi∑n

i=1 P̃(Θi)∆Θi

= C (2.14)

Consistency is subsequently the idea that the value we converge to is the true value we are interested

in estimating:

lim
n→∞

∑n
i=1 f(Θi)P̃(Θi)∆Θi∑n

i=1 P̃(Θi)∆Θi

= EP [f(Θ)] (2.15)

It is straightforward to show that if the expectation value is well-defined (i.e. it exists) and the

grid covers the entire domain of Θ (i.e. spans the smallest and largest possible values in every di-

mension) then using a grid is a consistent way to estimate the expectation value. This should make

intuitive sense: provided our grid is expansive enough inΘ so that we’re not “missing” any region of
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parameter space, we should be able to estimate EP [f(Θ)] to arbitrary precision by simply increasing

the resolution in ∆Θ.

Unfortunately, we do not know beforehand what range of values ofΘ our grid should span. While

parameters can range over (−∞,+∞), grids rely on finite-volume elements and so we have to choose

some finite sub-space to grid up. So while grids may give estimates that converge to some value over

the range spanned by the grid points, there is always a possibility that a significant portion of the

posterior lies outside that range. In these cases, grids are not guaranteed to be consistent estimators

of EP [f(Θ)]. An illustration of this issue is shown in Figure 2.3. This fundamental problem is not

shared by Monte Carlo methods.

2.2 Markov Chain Monte Carlo

Now that we see how the weights relate to various Monte Carlo sampling strategies (e.g., generating

samples from the prior), I will now outline the idea behindMarkov ChainMonte Carlo (MCMC). In

brief, MCMCmethods try to generate samples in such away that the importance weights {w̃1, . . . , w̃n}

associated with each sample are constant. This means MCMC seeks to generate samples proportional

to the posterior P(Θ) in order to arrive at an optimal estimate for our expectation value.

MCMCaccomplishes this by creating a chain of (correlated) parameter values {Θ1 → · · · → Θn}

over n iterations such that the number of iterationsm(Θi) spent in any particular region δΘi
centered

onΘi is proportional to the posterior density P(Θi) contained within that region. In other words, the

“density” of samples generated from MCMC

ρ(Θ) ≡ m(Θ)

n
(2.16)

at positionΘ integrated over δΘ is approximately

∫
Θ∈δΘ

P(Θ)dΘ ≈
∫
Θ∈δΘ

ρ(Θ)dΘ ≈ n−1

n∑
j=1

1 [Θj ∈ δΘ] (2.17)

where1 [·] is the indicator functionwhich evaluates to 1 if the inside condition is true and 0 otherwise.
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We can therefore approximate the density by simply adding up the number of samples within δΘ and

normalizing by the total number of samples n. A schematic illustration of this concept is shown in

Figure 2.4.

While this will just be approximately true for any finite n, as the number of samples n → ∞

this procedure generally guarantees that ρ(Θ) → P(Θ) everywhere. In theory then, once we have

a reasonable enough approximation for ρ(Θ), we can also use the samples {Θ1 → · · · → Θn}

generated from ρ(Θ) to get an estimate for the evidence:

Z =

∫
P̃(Θ)

ρ(Θ)
ρ(Θ)dΘ ≡ Eρ

[
P̃(Θ)/ρ(Θ)

]
≈ n−1

n∑
i=1

P̃(Θi)

ρ(Θi)
(2.18)

This is just the average of the ratio between P̃(Θi) and ρ(Θi) over all n samples.

Finally, since our MCMC procedure gives us a series of n samples from the posterior, our expec-

tation value simply reduces to

EP [f(Θ)] ≈ n−1
∑n

i=1 fiw̃i

n−1
∑n

i=1 w̃i

=
n−1

∑n
i=1 fi

n−1
∑n

i=1 1
= n−1

n∑
i=1

fi (2.19)

This is just the sample mean of the corresponding {f1, . . . , fn} values over our set of n samples.

To summarize, the idea behind MCMC is to simulate a series of values {Θ1 → · · · → Θn} in

a way that their density ρ(Θ) after a given amount of time follows the underlying posterior P(Θ).

We can then estimate the posterior within any particular region δΘ by simply counting up how many

samples we simulate there and normalizing by the total number of samples n we generated. Because

we are also simulating values directly from the posterior, any expectation values also reduce to simple

sample averages. This procedure is incredibly intuitive and part of the reason MCMC methods have

become so widely adopted.

2.3 Metropolis-Hastings Algorithm

Instead of an overview, I aim to clarify the basics of how these methods operate. The central idea is

that we want a way to generate new samplesΘi → Θi+1 such that the distribution of the final samples
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Figure 2.4: A schematic illustration of Markov Chain Monte Carlo (MCMC). MCMC tries to create
a chain of n (correlated) samples {Θ1 → · · · → Θn} (top) such that the number of samples m in
some particular volume δ gives a relative density m/n (middle) comparable to the posterior P(Θ)
integrated over the same volume (bottom). See §2.2 for additional details.
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ρ(Θ) as n → ∞ (1) is stationary (i.e. it converges to something) and (2) is equal to the P(Θ). These

are essentially analogs to the convergence and consistency constraints discussed in §2.1.3.

We can satisfy the first condition by invoking detailed balance. This is the idea that probability is

conserved when moving from one position to another (i.e. the process is reversible). More formally,

this just reduces to factoring of probability:

P (Θi+1|Θi)P (Θi) = P (Θi+1,Θi) = P (Θi|Θi+1)P (Θi+1) (2.20)

where P (Θi+1|Θi) is the probability of moving fromΘi → Θi+1 and P (Θi|Θi+1) is the probability

of the reverse move fromΘi+1 → Θi. Rearranging then gives the following constraint:

P (Θi+1|Θi)

P (Θi|Θi+1)
=

P (Θi+1)

P (Θi)
=

P(Θi+1)

P(Θi)
(2.21)

where the final equality comes from the fact that the distribution we are trying to generate samples

from is the posterior P(Θ).

We now need to implement a procedure that enables us to actually move to new positions by

computing this probability. We can do this by breaking each move into two steps. First, we want to

propose a new position Θi → Θ′
i+1 based on a proposal distribution Q(Θ′

i+1|Θi) similar in nature

to the Q(Θ). Then we will either decide to accept the new position (Θi+1 = Θ′
i+1) or reject the

new position (Θi+1 = Θi) with some transition probability T (Θ′
i+1|Θi). Combining these terms

together then gives us the probability of moving to a new position:

P (Θi+1|Θi) ≡ Q(Θi+1|Θi)T (Θi+1|Θi) (2.22)

We can chooseQ(Θ′
i+1|Θi) so that it is straightforward to propose new samplesΘ′

i+1 by numerical

simulation. We then need to determine the transition probability T (Θ′
i+1|Θi) of whether we should

accept or rejectΘ′
i+1. Substituting into our expression for detailed balance, we find that our form for
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the transition probability must satisfy the following constraint:

T (Θi+1|Θi)

T (Θi|Θi+1)
=

P(Θi+1)

P(Θi)

Q(Θi|Θi+1)

Q(Θi+1|Θi)
(2.23)

It is straightforward to show that theMetropolis criterion

T (Θi+1|Θi) ≡ min
[
1,

P(Θi+1)

P(Θi)

Q(Θi|Θi+1)

Q(Θi+1|Θi)

]
(2.24)

satisfies this constraint.

Generating samples following this approach can be done using the Metropolis-Hastings (MH)

Algorithm:

1. Propose a new position Θi → Θ′
i+1 by generating a sample from the proposal distribution

Q(Θ′
i+1|Θi).

2. Compute the transition probability T (Θ′
i+1|Θi) = min

[
1,

P(Θ′
i+1)

P(Θi)

Q(Θi|Θ′
i+1)

Q(Θ′
i+1|Θi)

]
.

3. Generate a random number ui+1 from [0, 1].

4. If ui+1 ≤ T (Θ′
i+1|Θi), accept the move and set Θi+1 = Θ′

i+1. If ui+1 > T (Θ′
i+1|Θi), reject

the move and setΘi+1 = Θi.

5. Increment i = i+ 1 and repeat this process.

See Figure 2.5 for a schematic illustration of this process.

Because algorithms like the MH algorithm generate a chain of states where the next proposed

position only depends on the current position rather than any of its past positions (i.e. it “forgets” the

past), they are known asMarkov processes. Combining these two terms with the Monte Carlo nature

of simulating new positions is what gives Markov Chain Monte Carlo (MCMC) its namesake.

An issue with generating a chain of samples in practice is the fact that our chain only has finite

length and a starting position Θ0. If our chain were infinitely long, we would expect it to visit every

possible position in parameter space, rendering the exact starting position is unimportant. However,

since in practice we terminate sampling after only n iterations, starting from a location Θ0 that has
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Figure 2.5: A schematic illustration of the Metropolis-Hastings algorithm. At a given iteration i, we
have generated a chain of samples {Θ1 → · · · → Θi} (white) up to the current positionΘi (red) whose
behavior follows the underlying posterior P(Θ) (viridis color map). We then propose a new position
Θ′

i+1 (yellow) from the proposal distribution (orange shaded region). We then compute the transition
probability T (Θ′

i+1|Θi) (white) based on the posterior Q(Θ) and proposal Q(Θ′|Θ) densities. We
then generate a random number ui+1 uniformly from 0 to 1. If ui+1 ≤ T (Θ′

i+1|Θi), we accept the
move and make our next position in the chainΘi+1 = Θ′

i+1. If we reject the move, thenΘi+1 = Θi.
See §2.3 for additional details.
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an extremely low probability means an inordinate fraction of our n samples will occupy this low-

probability region, possibly biasing our final results. Since we have limited knowledge beforehand

about where Θ0 is relative to our posterior, in practice we generally want to remove the initial chain

of states once we are confident our chain has begun sampling from higher-probability regions.

2.4 Monitoring Convergence - Gelman-Rubin Method

Operationally, effective convergence of Markov chain simulation has been reached when inferences

for quantities of interest do not depend on the starting point of the simulations. This suggests mon-

itoring convergence by comparing inferences made from several independently sampled sequences

with different starting points. Before considering methods of comparing inferences, we briefly dis-

cuss the standard method for constructing inferences under the assumption that convergence has been

approximately reached. It is standard practice to discard observations within an initial transient phase.

Most methods for inference are then based on the assumption that what remains can be treated as if

the starting points had been drawn from the target distribution.

We present the method of Gelman and Rubin using our general perspective of comparison of

inferences. The method presupposes thatm chains have been simulated in parallel, each with different

starting points which are overdispersed with respect to the target distribution. A number of methods

have been proposed for generating initial values for MCMC samplers. Gelman and Rubin proposed

using a simple mode-finding algorithm to locate regions of high density and sampling from a mixture

of t-distributions located at these modes to generate suitable starting values.

Given any individual sequence, and if approximate convergence has been reached, an assumption

is made that inferences about any quantity of interest is made by computing the sample mean and

variance from the simulated draws. Thus, the m chains yield m possible inferences; to answer the

question of whether these inferences are similar enough to indicate approximate convergence, Gelman

and Rubin suggested comparing these to the inference made by mixing together the mn draws from

all the sequences. Consider a scalar summary—that is, a random variable—θ , that has mean µ and

variance σ2 under the target distribution, and suppose that we have some unbiased estimator µ̂ for

µ. Letting θjt denote the tth of the n iterations of θ in chain j, we take µ̂ = θ̄.., and calculate the
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between-sequence variance B/n, and the within-sequence varianceW , defined by

B/n =
1

m− 1

m∑
j=1

(
θ̄j. − θ̄..

)2 (2.25)

W =
1

m(n− 1)

m∑
j=1

n∑
t=1

(
θ̄jt − θ̄j.

)2 (2.26)

Having observed these estimates, we can estimate σ2 by a weighted average of B andW ,

σ̂2 =
n− 1

n
W +

B

n
, (2.27)

which would be an unbiased estimate of the true variance σ2 if the starting points of the sequences

were drawn from the target distribution, but overestimatesσ2 if the starting distribution is appropriately

overdispersed. The comparison of pooled and within-chain inferences is expressed as a variance ratio,

R =
σ̂2

σ2
(2.28)

which is called the scale reduction factor (Strictly speaking, the term “scale reduction factor” applies

to
√
R). Because the denominator of R is not itself known, it must be estimated from the data

R̂ =
m+ 1

m

σ̂2

W
− n− 1

mn
, (2.29)

which is called the potential scale reduction factor, or PSRF, and can be interpreted as a convergence

diagnostic as follows. If R̂ is large, this suggests that the estimate of the variance σ̂2 can be further

decreased by more simulations. Alternatively, if the PSRF is close to 1, we can conclude that each of

them sets of n simulated observations is close to the target distribution.
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