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4 The basics

Fig. 1.1 A schematic representation of (a) deductive logic, or pure mathematics, and (b) plausible
reasoning, or inductive logic.

designed to indicate that it is a much harder problem. The most we can hope to do is to
make the best inference based on the experimental data and any prior knowledge that
we have available, reserving the right to revise our position if new information comes to
light. Around 500 BC, Herodotus said much the same thing: ‘A decision was wise, even
though it led to disastrous consequences, if the evidence at hand indicated it was the
best one to make; and a decision was foolish, even though it led to the happiest possible
consequences, if it was unreasonable to expect those consequences.’
Even though plausible reasoning is rather open-ended, are there any general quanti-

tative rules which apply for such inductive logic? After all, this issue is central to data
analysis.

1.2 Probability: Cox and the rules for consistent reasoning
In 1946, Richard Cox pondered the quantitative rules necessary for logical and con-
sistent reasoning. He started by considering how we might express our relative beliefs
in the truth of various propositions. For example: (a) it will rain tomorrow; (b) King
Harold died by being hit in the eye with an arrow at the battle of Hastings in 1066 AD;
(c) this is a fair coin; (d) this coin is twice as likely to come up heads as tails; and so
on. The minimum requirement for expressing our relative beliefs in the truth of these
propositions in a consistent fashion is that we rank them in a transitivemanner. In other
words, if we believe (a) more than (b), and (b) more than (c), then we must necessarily
believe (a) more than (c); if this were not so, we would continue to argue in circles.
Such a transitive ranking can easily be obtained by assigning a real number to each of
the propositions in a manner so that the larger the numerical value associated with a
proposition, the more we believe it.

Deductive Logic

Inductive Logic
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P(A | B) =
P(A \ B)

P(B)

Conditional Probability

P(A) Observing the data.

P(B) The theory is true.

P(A | B) The data is observed given

that the theory is true
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Bayesian Rule

Symmetry Rule

P(B \ A) = P(A \ B)

P(B | A)P(A) = P(A | B)P(B)

P(B | A) =
P(A | B)P(B)

P(A)
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"There are no problems left in statistics 
except the assessment of probability"
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P(A | B) , P(B | A)
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P(H |D) =
P(D |H)P(H)

P(D)

P(H) Probability that the hypothesis is true.

P(D |H) Probability that the data is observed
given that the hypothesis is true.

P(D) Probability that the collections of data
is liable.

P(H |D) Probability that the hypothesis is true
given that the data is true.

Prior

Likelihood

Evidence

Posterior
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• A theory usually have many parameters, 
for example, a two-parameter model 

• The hypothesis is the assumption that the 
parameter have a particular value 
for example

⇥ = {⇥1,⇥2}

H1 : ✓1 = 1.0 and ✓2 = 2.0

H1 ⌘ ✓1 = (✓1, ✓2)
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• The prior probability is the distribution of the 
parameters we know before the experiment 
(degree of believe).


• We can have a uniform distribution for total 
ignorance or a normal distribution if mean and 
standard deviation are given.
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• The evidence is usually considered as a 
normalization constants — nothing to do with 
parameter estimations.

P(✓ | x) / L(x | ✓) ⇡(✓)

• However, the evidence is important model 
comparison.
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• In most cases, we are working the logarithm of 
the likelihood function called log-likelihood

• Expanding around the maximum of the  log-
likelihood at     i.e.✓0
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✓=✓0

= 0

L(x | ✓) = logeL(x | ✓)

L(x | ✓) = L(x | ✓0) +
1
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• We define the precision matrix     asP

where

• The log likelihood is given by

P↵� ⌘
@2L
@ ✓↵ @ ✓�

�����
✓=✓0

L(x | �) � exp
�
�1

2
(� � �0)T · P · (� � �0)

�

L(x | �) = L(x | �0) � 1
2

(� � �0)T · P · (� � �0)



Bayesian Statistics

14

• The inverse of the precision matrix is called 
covariance matrix

P ⌘ C�1

• The variance of the parameter can be estimated 
as

Var (✓↵) = C↵↵

L(x | �) � exp
�
�1

2
(� � �0)T · C�1 · (� � �0)

�
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Markov Chain Monte Carlo (MCMC)

A Markov chain is a chain of states in a parameter 
space that is "memoryless" (Markov property).

How the state change depends only on the current state.
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Markov Chain Monte Carlo (MCMC)

A Monte Carlo is a method using random walk to 
generate the output.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is an algorithm 
for random walks that will eventually converge to a 
true distribution of the parameter space.

proposal distributiontransitional probability

prior probability

P(✓1 ! ✓2) / ⇡(✓1) q(✓1 ! ✓2)
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Metropolis-Hastings Algorithm

The change of state from      to      is governed by 
the acceptance rate

↵(✓1 ! ✓2) = min
⇢
1,
⇡(✓2) q(✓2 ! ✓1)
⇡(✓1) q(✓1 ! ✓2)

�

↵(✓1 ! ✓2) = min
⇢
1,
⇡(✓2)
⇡(✓1)

�

✓1 ✓2

We are assumed an equilibrium state; hence, 

q(✓1 ! ✓2) = q(✓2 ! ✓1)

Therefore,
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Metropolis-Hastings Algorithm

alpha = likelihood2 / likelihood1;
if alpha > 1:

jump to the new state;
else:

if alpha > rand();
jump to the new state;

else:
remain in the same state;

Pseudo code for Metropolis-Hastings Algorithm
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Metropolis-Hastings Algorithm

Burn-in !

•  Mathematical theorems guarantee 
that the Metropolis algorithm will 
asymptotically converge to the 
target distribution independently 
of its starting point. !

•  However, there will be an initial 
transient of unknown length during 
which the chain reaches its 
stationary state.!

•  In practice, you have to assume 
that after Nb iterations, the chain 
converged and started sampling 
from its target distribution. !

•  The value of Nb is called the burn-
in number.!

C. Porciani! Estimation & forecasting ! 79!

The chain will take some time to stabilize this is 
called the burn-in phase
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Metropolis-Hastings Algorithm
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Kernel Density Estimator

• Histogram is a common way to make sense of 
discrete data.

93.5, 93, 60.8, 94.5, 
82, 87.5, 91.5, 99.5, 
86, 93.5, 92.5, 78, 
76, 69, 94.5, 89.5, 
92.8, 78, 65.5, 98, 

98.5, 92.3, 95.5, 76, 
91, 95, 61.4, 96, 90

Data Histogram
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Kernel Density Estimator

• The same data could generate different 
histograms with different number of bins.
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Kernel Density Estimator

• The same data could generate different histograms 
with different starts of left-edge of bins.
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Kernel Density Estimator

• Not smooth

• Depend on width of bins

• Depends on end points of bins

Drawbacks of Histogram
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Kernel Density Estimator

• If we instead replace the data point by a kernel 
function
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Kernel Density Estimator

• For, simplicity suppose we have only three data 
points 0, 5, 10
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Kernel Density Estimator

• For, simplicity suppose we have only three data 
points 0, 5, 10
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Kernel Density Estimator

• For, simplicity suppose we have only three data 
points 0, 5, 10
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Kernel Density Estimator

• With our previous data
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Kernel Density Estimator

• The plot is not smooth because we have a non-
smooth kernel function


• We can use a smooth kernel function for example a 
Gaussian function
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Kernel Density Estimator

• We have a smooth distribution.



33

Kernel Density Estimator

• We oversmooth the distribution.

Oversmoothed



34

Kernel Density Estimator

• The optimal bandwidth has to be estimated.


• A normal way to estimated the optimal bandwidth 
is to minimize the Asymptotic Mean Integrated 
Squared Error (AMISE)

Z
( f (x) � fn(x))2dx
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Kernel Density Estimator



36

Kernel Density Estimator


