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Probability

* Probability as a measure
of uncertainty

e \arious applications in
many fields e.g. physics,
finance, gaming




Applications of Probability
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Decision Making

* Helps in making informed
decisions under uncertainty.

e Enables risk assessment and
management.

N
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Weather Forecasting

 Forecasts future weather
conditions based on
historical data and statistical
models.

W D

Scientific Research Insurance Industry
* Used to analyze experimental » Calculates premiums and
data and draw conclusions. assesses risks.

* Aids in hypothesis testing
and model building.
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G
Finance and Investing Quality Control
* Predicts market trends and * Monitors product quality and
evaluates investment identifies potential defects.

opportunities.



Deductive vs Inductive

Effects

Deductive Logic (&)  couse 0<:o or

outcomes
(What you learn
iNn a science class) o

Effects
or
observations

Possible

Inductive Logic  (P) Sid e
(What science actually is)

c O O O O

/



Interpretation of Probability

There are different ways we can interpret probability:

* Frequentist interpretation:
probability as an objective property of the world, defined
as the long-run frequency of an event.

e Bayesian interpretation:
probability as a degree of belief or uncertainty about a
proposition. It can be updated as new evidence is
obtained.



Frequentist vs Bayesian

* There are two distinct approaches to statistical inference,
along with their underlying definitions of probability.

Approach Frequentist Bayesian
Definition of Probability | Probability is seen as the |Probability is seen as a
long-run relative measure of belief or
frequency of an event certainty about an event.
occurring in repeated, It incorporates both prior
independent knowledge and new

experiments. It is based |evidence to update
on objective, observable |beliefs.
frequencies.




Frequentist vs Bayesian

Approach Frequentist Bayesian
Parameters Parameters are fixed, Parameters are
unknown values. considered random
Inference is about variables with probability
estimating these fixed distributions. Inference
values based on involves updating prior
observed data. distributions with
observed data to obtain
posterior distributions.
Subjectivity It is considered an Acknowledges
objective approach, as |subjectivity, as it allows
probabilities are based [the incorporation of prior
on observed frequencies, |beliefs. Bayesian
and conclusions are not |inference is sensitive to
influenced by subjective |the choice of priors.
beliefs.




Frequentist vs Bayesian

Approach

Frequentist

Bayesian

Hypothesis Testing

Emphasizes hypothesis
testing, focusing on
rejecting or failing to
reject null hypotheses
based on the observed
data.

While hypothesis testing
IS possible, Bayesian
inference often focuses
on estimating parameters
and updating beliefs
rather than strict
hypothesis testing.

Prior Information

Typically does not
incorporate prior beliefs
or subjective information
about parameters.

Incorporates prior
information, allowing
researchers to include
existing knowledge or
beliefs about parameters
In the analysis.




Conditional Probability

Conditional Probability

P(A N B)
P(B)

P(A|B) =

P(A) Observing the data.

P(B) The theory 1s true.

P(A|B) The data 1s observed given
that the theory 1s true



Bayesian Rule

Symmetry Rule

P(BNA) = P(AN B)

P(B|A)P(A) = P(A| B)P(B)

Bayesian Rule

P(A| B)P(B)

P(B|A) = 0
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Bayesian Rule

"There are no problems left in statistics
except the assessment of probability”
Lindley (2000)
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Bayesian Statistics
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P(H)

P(D| H)

P(D)

P(H | D)

P(D | H)P(H)

P(H|D) = D)

Probability that the hypothesis 1s true.

Probability that the data i1s observed
given that the hypothesis 1s true.

Probability that the collections of data
1s liable.

Probability that the hypothesis 1s true
given that the data 1s true.
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Prior

Likelihood

Evidence

Posterior



Hypothesis Space

* A theory usually have many parameters, for example
a two-parameter model

O ={0,0,]

* The hypothesis is the assumption that the parameter

Hypothesis 1 (H;) : 617 =10, 60;=1.2
Hl — 61 — {6)1,(92}
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Prior Probability

* The prior probability is the distribution of the parameters
we know before the experiment (degree of belief).

* WWe can have a uniform distribution for total ignorance or
a normal distribution if mean and standard deviation are
given.

m(0)




Likelihood

* In most cases, we are working with the logarithm of
the likelihood function called log-likelihood.

L(x|0) = In L(x|0)

* Expanding around the maximum of the log-likelihood

at 90 l.e.
oL
e —0
000 |g—g,
1 0%L
L(x|0) = L(x|0 — 00 — 0a0) (05 — 030)-
e16) = Lie80) + 53 g5 (8= Bua) (05— 00




Likelihood

* We define the precision matrix P as
1 T
L(]0) = L(x|6) — 5(6 — 60) - P- (6~ 60).
where
O0°L

P.s =
T 00,005 | g_g,

* The likelthood is then given by

L(x|0) x exp ( %(9 — HO)T P (0 — 90)).
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Likelihood

 The inverse of the precision matrix is called
covariance matrix

C =P
then

1
L(x]0) x exp ( — 5(0 — HO)T C™ (0 - 90)) .
* The variance of the parameter can be estimated as
Var(8,) = Cpo = Jga.
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Marginalization

Suppose that we have a proposition B with its negative
counterpart B. From the sum rule

P(A, B|I) + P(A,B|I) = P(A|I).

This is called marginalisation.

P(A, By|I) + P(A, Bo|I) + ...+ P(A, By|I) = 1,
or

/ dBP(A, B|T) = P(A|I).
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 The evidence is usually considered as a normalization
constants — nothing to do with parameter estimations.

P(O|x) x L(x]|0)m(0)

 However, the evidence is important for model comparison .

L(CU|91)7T(61)
D(x| M)

£($‘02)7T(92)
D(x| M)

P(6:]x) = , P(O2]z) =

20



The evidence could be computed by marginalize over the
hypothesis space.

Z = / L(O)7(©)dO = / P(©)de

where P(©) = L(©)7(0) is the unnormalized posterior.
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Posterior Probability

* This is the revised probability of the event or hypothesis
after considering the new data.

Prior Likelihood
2 2
A A £(0)
c c
@ (V)
o o
2 n(o) x 2
re) o) .
3 8 Posterior
o o
‘@
Model Parameter Model Parameter g
—_— >
Evidence |
L0
o
Q.
Model Parameter
[n(6)c(0)de

Probability Density

A

Model Parameter
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Bayesian Rule

P(Hypothesis|Data, Prior Information) o< P(Data|Hypothesis, Prior Information)

x P(Hypothesis|Prior Information)

OR

Posterior o« Likelihood x Prior
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Example: Monte Hall Problem

* Monty shows you three closed doors and tells you that there is a
prize behind each door: one prize is a car the other two are less
valuable prizes like goats. The prizes are arranged at random.

 The object of the game is to guess which door has the car. If you
guess right, you get to keep the car.

* You pick a door, which we will call Door A. We'll call the other
doors B and C.

24



Example: Monte Hall Problem

» Before opening the door you chose, Monty increases the
suspense by opening either Door B or C, whichever does not
have the car. (If the car is actually behind Door A, Monty can
safely open B or C, so he chooses one at random.)

* Then Monty offers you the option to stick with your original
choice or switch to the one remaining unopened door.

The question is, should you stick or switch or does it make no
difference?

25



Example: Monte Hall Problem

. Prior Likelihood Posterior
Choice (0) () w(©) - L(O) P(O|D)
A 1/3 1/2 1/6 1/3
B 1/3 0 0 0
C 1/3 1 1/3 2/3
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What are Posteriors Good for?

* Making educated guesses:
This is the revised probability of the event or hypothesis after
considering the new data.

* Quantifying uncertainty:
Provide constraints on the range of possible model parameter
values.

e Generating predictions:
Predict observables or other variables that depend on the
model parameters.

e Comparing models:
Use the evidences from different models to determine which
models are more favorable.
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2D Marginalized Posterior PDF

1-D Marginal
/ Distribution

Point Estimate

4
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Model Comparison
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Variance and Covariance

Variance is the average of the square deviation from
the mean of a parameter,

Var(0) =E((0-E(9))*).

Covariance is the average of the joint deviation from
the mean of two parameters,

Cov (0;,0;) = B((6: = E(6:)) (6; — E(65)) ).

30



Covariance Matrix

e The covariance matrix is related to the correlation matrix

Var(6;) ... Cov(61,0,)
Cc - S
Cov(#,,01) ... Var(6,)
09, 0 09, 0
C = ' 5 R -
0 o’ 0 o’

where IR is the correlation matrix.

31



Correlation Matrix

e The correlation matrix

1 ... Corr(64,60,)
COII‘(Hn, 01) o 1
e where

COV(@OH (95)

06,00,

Corr(6,08) =

32



Correlations

Positive correlation

Negative correlation

No correlation

The points lie close to a
straight line, which has a
positive gradient.

This shows that as one
variable increases the
other increases.

The points lie close to a
straight line, which has a
negative gradient.

This shows that as one

variable increases. the
other decreases.

33

There is no pattem to the
points.

This shows that there 1s no
connection between the
two vanables.



Parameter Estimation

 The posterior encodes our inference about the parameter
iIn the model, given the data and the relevant background

iInformation.

* We wish to summarize this with just two numbers: the
best estimate (mean) and a measure of its reliability

(deviation).

 With posterior we could either calculate the average value
or the maximum likelihood value;

dP

- = = 0.
0 - or VeP

34



Parameter Estimation

/Y
\JV

 The approximation 2D
marginalized probability
density will an ellipse.

 For a 1sigma confidence
region (68%)

X1, = 2.30

e Other confidence regions
X5, = 6.18

X3, = 11.83
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Approximating Posterior with Grids

 The posterior pdf are usually has no analytic form, which

we will have to use numerical method to approximate the
posterior.

 |In 1D, we can approximate it using standard numerical

techniques such as a Riemann sum over a discrete grid
of points:
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Approximating Posterior with Grids

* We could take the mid points as the sampling points:

@j-|—1 + @j
2

O, =
* We could generalized to higher dimension in a similar way,

d
A@z — H A@@j

j=1

* However the number of sampling points will increase
exponentially - this is the curse of dimensionality.
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Approximating Posterior with Grids

Posterior Approximation
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Effective Sampling Size

 Uniform sampling method has a drawback of spending a
lot of computational time on the region with low

orobability i.e. P(©) is small.

* For high dimensional space, most of the volume will have
low probabillity.

 We will take the posterior into account as the weight of
the grid point;
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Effective Sampling Size
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Convergence and Consistency

* Convergence is the idea that, while our estimates using »
samples (grid points) might be noisy, it approaches some
fiducial value as n — oc:

L (@)P(©)Ae,
nTreo Zizlp( i)AO;

* Consistency is subsequently the idea that the value we
converge to is the true value we are interested In
estimating:

L f(@)P©)Ae,
nTreo Zi:17)( i)AO;

=Ep (f(O))
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Convergence and Consistency

Initial estimate Estimate improves Estimate converges ...butis not consistent

y

2 modes

\/

Model Parameter 2
Model Parameter 2
Model Parameter 2
Model Parameter 2

Model Parameter 1 Model Parameter 1 Model Parameter 1 Model Parameter 1

—
Increasing resolution
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Markov Chain Monte Carlo (MCMC)

A Markov chain is a chain of states in a parameter space
that is “memoryless” (Markov property).

0.3

¥

How the stage change depends only on the current state.

4

0
0.6
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Markov Chain Monte Carlo (MCMC)

A Monte Carlo is a method using random walk to generate
the output. (rejection sampling method)
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Metropolis-Hasting Algorithm

 The Metropolis-Hastings algorithm is an algorithm for
random walks that will eventually converge to a true
distribution of the parameter space.

P(0, — 0») o< 11(601) q(61 — 6>)

T |

transitional probability proposal distribution

prior probability
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Metropolis-Hasting Algorithm

The change of state from 61 to 85 is governed by
the acceptance rate

a(@; — 0,) = min{l

n(6) q(0r — 91)}
" 71(6;) q(0; — 6,)

We are assumed an equilibrium state; hence,
q(0, — 6,) = q(6, — 0,)

Therefore,

a(0; — 6,) = min{l ﬂ(HZ)}

" 7(6,)

46



Metropolis-Hasting Algorithm

Pseudo code for Metropolis-Hastings Algorithm

alpha = likelihood2 / likelihoodl;
1f alpha > 1:
jump to the new state;
else:
1f alpha > rand();
jump to the new state;
else:
remaln 1n the same state;

47



MCMC Chains

The chain will take some time to stabilize. This is called
the burn-in phase.
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Markov Chain Methodology

Compare with the data
Input Parameters S

{QM,QB,HO,AS,HS,T} %TI:%JM%\\

Likelihood L£(6|x)

A4

Metropolis-Hastings
Algorithm
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Convergence Test

e Operationally, effective convergence of Markov chain
simulation has been reached when inferences for

quantities of interest do not depend on the starting point
of the simulations.

 We will need to cut the burn-in phase - usually the first
half of the chains.

e [t is advisable to have many chains and make a
comparison between them.
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Gelman-Rubin Convergence Test

* We will need to compute the estimated mean and
compare the variance.

e For m number of MC chains, Define between-chain
variance as

B/n = ml_ 7 Z (0;. — é..)Q

J=1

where Ut is the 7 of the # iteration of 6 in chain j. The
variance between chains is

S

1
m(n — 1)

W= (00 -6;)
t=1

1]

J
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Gelman-Rubin Convergence Test

» We can calculate the weighted variance 6° as

1 B
62 =W =
T T

« The Gelman-Rubin diagnostic R is a method to assess
the convergence of MCMC chains.

m+162 n-—1

m W mn

R =

* The standard convergence is when

A

R—1<0.01
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* Histogram is a common way to make sense of
discrete data

Data Histogram

93.9, 93, 60.8, 94.5,
82, 87.5, 91.5, 99.5,
80, 93.5, 92.5, 78,
76, 09, 94.5, 89.5,
92.8, 78, 65.95, 93,
98.9, 92.3, 95.95, 70,
91, 95, 61.4, 90, 90 5 65 70 75 80 8 %0 9 100
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 The same data could generate different histograms
depending on the number of bins used.

55



 The same data can generate different histograms
depending on the starting point of the left edge of the bins.

55 60 65 70 75 80 85 90 95 100 60 65 75 80 85 90 95 100

56



Drawbacks of Histogram

 Not smooth
 Dependence on width of the bins

 Dependence on the end points of bins
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Kernel Density Function

* |f we instead replace the data point by a kernel function
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Kernel Density Function

* For simplicity suppose we have only three data points

0,5,10
3.0 , , . . . . 3.0
2.5 | 1 25t
2.0 | 1 20}
15 | 1 1s5f
1 10} |
* ' 0.0
2 8 -4 =2 0 2 4 6 8 10 12 14
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Kernel Density Function

* For simplicity suppose we have only three data points
0,5,10

2-0 = - 2-0 — — —_—

1.5 4 15}

1.0 | 1 10
0.5 | 1 o5}
Qo o o
0.0 0.0 | | | | | | | |
—4 14 -2 0 2 4 6 8 10 12
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Kernel Density Function

* For simplicity suppose we have only three data points

0,5,10
2.0} - 3.0
25}
15}
2.0}
1.0 1.5 F
1.0
0.5 F
0.5 F
o ® o ® ° °
0.0 : : : 0.0 : -
0 5 10 -10 -5 0 5 10 15
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Kernel Density Function

* With our previous data

| | | |
50 60 70 80 90 100 110

62



Kernel Density Function

* By using the kernel density function, our histogram will no
longer depends on the width of the bins and
the end points of the bins

e However, the distribution is still not smooth.
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Kernel Density Function

* The plot is not smooth because we use a non-smooth
kernel function.

 We can use a smooth kernel function; for example,
the Gaussian function.
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Kernel Density Function

e We have a smooth distribution.

|
50 60 70 80 90 100 110
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Kernel Density Function

e \We oversmooth the distribution - the feature will be washed
OUt.

Oversmoothed

3500

3000 |

2500 |

2000 |-

1500 |

1000 |

500 |
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Kernel Density Estimator

* The optimal bandwidth has to be estimated

* A standard way to estimated the optimal bandwidth
is to use Sheather-Jones estimator.

h = 1.066xN1/°

6/
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