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Résumé — AltaRica 3.0 est un langage de modélisation dédié aux analyses probabilistes de sécurité de systèmes techniques 1 

complexes. L’équation « S2ML + GTS = AltaRica 3.0 » est une bonne façon de le présenter. AltaRica 3.0 résulte en effet de la 2 

combinaison de S2ML (System Structure Modelling Language), un ensemble de primitives orientées objet et orientées 3 

prototype permettant de structurer les modèles avec le cadre mathématique des GTS (Guarded Transition Systems). L’atelier 4 

de modélisation AltaRica 3.0 fournit plusieurs outils de traitement de modèles AltaRica 3.0 : un simulateur interactif, un 5 

simulateur stochastique, un générateur de séquence critiques ainsi qu’un compilateur vers les systèmes d’équations Booléennes 6 

stochastiques, le cadre mathématique sous-jacent aux arbres de défaillance et aux blocs diagrammes de fiabilité. L’objectif de 7 

cette communication est de présenter les améliorations que nous avons récemment apportées à ce dernier outil. 8 

 9 

Mots-clefs — MBSA, AltaRica 3.0, génération automatique, équations Booléennes stochastiques, Blocs diagrammes de fiabilité, 10 
Arbres de défaillance 11 

Abstract — AltaRica 3.0 is a modelling language dedicated to probabilistic safety analyses of complex technical systems. 12 

AltaRica 3.0 is the result of the combination of S2ML (System Structure Modelling Language), a set of object-oriented and 13 

prototype-oriented constructs to structure models, and the mathematical framework of GTS (Guarded Transition Systems). 14 

AltaRica 3.0 Workshop is an integrated modelling environment that provides several tools for processing AltaRica 3.0 models: 15 

an interactive simulator, a stochastic simulator, a generator of critical sequences as well as a compiler to stochastic Boolean 16 

equations, the underlying mathematical framework of fault trees and reliability block diagrams. The goal of this communication 17 

is to present the improvements that we have recently made to this last tool. 18 

 19 
Keywords — MBSA, AltaRica 3.0, automatic generation, stochastic Boolean equations, Reliability Block Diagrams, Fault Trees. 20 

 21 

I. INTRODUCTION 22 

AltaRica 3.0 is a modelling language dedicated to probabilistic safety analyses of complex technical systems [1]. AltaRica 3.0 23 

is the result of the combination of S2ML (System Structure Modelling Language), a set of object-oriented and prototype-24 

oriented constructs to structure models [2], and the mathematical framework of GTS (Guarded Transition Systems) ([4],[5]). 25 

AltaRica 3.0 Workshop is an integrated modelling environment that provides several tools for processing AltaRica 3.0 models: 26 

an interactive simulator, a stochastic simulator, a generator of critical sequences as well as a compiler to stochastic Boolean 27 

equations, the underlying mathematical framework of fault trees and reliability block diagrams. The goal of this communication 28 

is to present the improvements that we have recently made to this last tool. 29 

mailto:michel.batteux@systemic-intelligence.net
mailto:tatiana.prosvirnova@onera.fr
mailto:antoine.rauzy@ntnu.no


Congrès Lambda Mu 24 14 au 17 octobre 2024, Bourges 
 

Automatic generation of stochastic Boolean equations from high-level models has many advantages. First, the same AltaRica 30 

model can be used to study several safety objectives. Second, the high-level model better reflects the architecture of the studied 31 

system and therefore is easier to develop and to maintain than the Boolean models. 32 

The general principle of the compilation of AltaRica models towards systems of stochastic Boolean equations was stated in 33 

2002 for AltaRica Data-Flow [7] and extended to AltaRica 3.0 in 2015 [8]. The compilation algorithm has several steps. The 34 

first step, called "flattening", consists in compiling the AltaRica model into a single system of guarded transitions. This first 35 

step loses the initial structure of the model that reflects the architecture of the studied system. The generated system of stochastic 36 

Boolean equations gives the expected results: the minimal cuts extracted from this system are those that the analyst expects. 37 

However, the generated Boolean model is very difficult to read by the analyst and very far from the one that the latter could 38 

have written "by hand". 39 

We recently made several improvements to this compilation algorithm. We added a new step to the compilation process. This 40 

step, which could be called "inflating", produces the opposite effect of "flattening": it reinjects the generated stochastic Boolean 41 

equations into the original structure of the model. This makes it possible to obtain a Boolean model close to a hierarchical 42 

reliability block diagram, which is directly readable by the analyst. 43 

This new compilation algorithm reinforces the AltaRica 3.0 technology and thereby the so-called model-based approach for 44 

dependability analyses. 45 

 46 

The reminder of this article is organized as follows. Section II presents an example, which is used to illustrate the compilation 47 

algorithm. Section III introduces S2ML + X family of modelling languages. Section IV describes the compilation algorithm 48 

and its improvement. Section V concludes this article. 49 
 50 

II. ILLUSTRATIVE EXAMPLE : A TRACKING SYSTEM  51 

 
Fig. 1. A Tracking system 52 

 53 

Consider the tracking system pictured in Fig. 1. The system is taken from [6]. This highly redundant system processes 54 

information coming from two redundant sources S1and S2 (external to the system). The information coming from each source 55 

is acquired in triplicated acquisition modules M1, M2 and M3. Each acquisition block consists of two acquisition chains, one 56 

for each source. Each chain consists itself of an acquisition block Ai and a calculator Ci. Results of calculations are sent to two 57 

voters V1 and V2 working according to a 2-out-of-3 logic. 58 

Finally, the outputs of the two voters are aggregated into two calculators D1 and D2 that send the information to the target T 59 

(external to the system). Voters V1 and V2 and calculators D1 and D2 are part of the same logic solver LS. 60 

We assume that all the components may fail in operation with failure rates given in TABLE I.  Failures of components external 61 

to the system (S1, S2 and T) are not considered in this study. 62 

The failure condition of interest occurs when the target T does not receive any information from the sources S1 and S2. 63 

In this article, we first show how this case study can be easily represented with AltaRica 3.0 modelling language. Second, we 64 

illustrate how it is compiled into systems of stochastic Boolean equations. 65 

 66 

 67 

TABLE I.  FAILURE DATA 68 
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Component 
Failure data 

Probability distribution Parameters 

Acquisition unit Exponential =1.23e-4 

Calculator Weibull =5.67e+4, =3 

Voter Exponential =2.64e-7 

 69 

III. S2ML + X FAMILY OF MODELLING LANGUAGES 70 

Modelling languages used in different engineering domains (e.g. Modelica, Lustre, AltaRica, etc.) are made of two parts:  71 

 A set of constructs to structure models, i.e. to organize models in order to make them easily readable, maintainable 72 

and reusable; 73 

 An underlying mathematical framework describing the behaviour (e.g. linear differential equations, guarded 74 

transition systems, stochastic Boolean equations, etc.).  75 

In the formula S2ML + X [3], S2ML stands for System Structure modelling language, a set of constructs to structure models 76 

and X stands for any mathematical framework describing system behaviour. 77 

In safety analyses, modelling formalism can be divided in two categories: 78 

 Combinatorial (also called Boolean or static), and 79 

 State/transition formalisms (also called dynamic). 80 

Examples of combinatorial formalisms are well known Fault Trees and Reliability block diagrams. Examples of 81 

state/transition formalisms are Markov chains, stochastic Petri nets and AltaRica. In the following, we present two modelling 82 

languages: AltaRica 3.0 [1] and new Open-PSA [9]. Both use S2ML for their structural part. For the behavioural part 83 

AltaRica 3.0 is based on Guarded Transition Systems and belongs to State/Transition category, and new Open-PSA is based 84 

on Stochastic Boolean Equations (SBE) and belongs to combinatorial category. 85 

 86 

A. S2ML (System Structure Modelling language) 87 

S2ML is a modelling language that provides a set of constructs to structure models, i.e. to organize models in order to make 88 

them easily readable, maintainable and reusable [2].  89 

 90 

S2ML provides four basic elements: 91 

 Ports, basic objects of models used to represent variables, events, parameters, equations and so on; 92 

 Connections, used to describe relations existing between ports; 93 

 Blocks, containers for ports, connections, blocks and other elements; 94 

 Attributes, couples of name and value, used to associate information to ports, connections and blocks. 95 

 96 

The basic structural construct is a block, also called a prototype. A block is a container for variables, parameters and all the 97 

other modeling artifacts. The simplest structuring relation is the composition. A block may be composed of several other 98 

blocks. Classical safety analysis formalisms, such as Fault Trees and Reliability Block Diagrams, use only blocks and 99 

composition for structuring models.  100 

In order to be able to reuse blocks, structured programming languages introduce the notions of class and instantiation of 101 

classes. A class is a reusable “on-the-shelf” block, which is stored in a library and can be reused everywhere in the model via 102 

instantiation. 103 

In some cases, it is necessary to modify or to extend a modeling unit (a class or a block) without instantiation. It can be 104 

achieved via inheritance relation introduced in object-oriented programming languages. If a modeling unit A inherits from a 105 

modeling unit B, then A contains all the characteristics of B and adds some new characteristics. 106 

There are cases where the same component is used in several places or to contribute to different functions of the system. In 107 

other words, a modeling unit is shared between several other modeling units. This kind of “uses” relation between modeling 108 

units is called aggregation. 109 

In object- oriented programming languages, the reuse of modeling units is done by means of instantiation of classes. In 110 

modeling languages using only blocks (called prototype-oriented languages), the reuse of blocks is also possible. It is 111 

achieved via the notion of cloning. If a block A is a clone of a block B, then the block A has exactly the same characteristics 112 

as the block B.  113 

To summarize, S2ML proposed the following constructs to organize and structure models: 114 

 Two types of modeling units: block and class; 115 

 Three structural relations: composition, inheritance and aggregation; and 116 

 Two mechanisms making possible to reuse modeling elements: prototype/cloning and class/instantiation. 117 

These constructs originate from programming languages.  118 

 119 
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Fig. 2. Operations on S2ML + X models 120 

1) Flattened model 121 

We call hierarchical or structured S2ML model a model made of blocks, instances of classes, and using operations such as 122 

cloning, inheritance, composition and aggregation. Any hierarchical or structured S2ML model is semantically equivalent to a 123 

flat one, i.e. a model made of a unique block with ports and connections (also called flattened model). The flattened model is 124 

obtained by applying recursively rewriting rules, the so-called flattening rules. These rules “remove the walls” of containers 125 

(blocks and instances of classes), perform cloning, inheritance and aggregation operations. In the S2ML specification 126 

document, they are formally defined in a Structural Operational Semantics style (see e.g. [11]). The operation of transformation 127 

of a hierarchical or structured S2ML model into a flattened one is called flattening (see Fig. 2).  128 

 129 

For example, to be assessed by different calculation engines AltaRica 3.0 models are flattened and transformed into Guarded 130 

Transition Systems (GTS). This first step makes the assessment more efficient. 131 

 132 

2) Instantiated model 133 

Any hierarchical or structured S2ML model is also semantically equivalent to an instantiated or unfolded one, i.e. a model 134 

made of a hierarchy of nested/aggregated blocks, connections and ports. In the unfolded model, all the instantiated/inherited 135 

classes and “clones” directives are transformed into blocks and all the references/paths to model elements are resolved 136 

according to the rewriting rules, the so called unfolding or instantiation rules. 137 

The operation of transformation of a structured S2ML model into an instantiated one is called instantiation or unfolding (see 138 

Fig. 2). The instantiated S2ML model can be further transformed into a flatten one. 139 

 140 

The flattening process can be done in two steps: first, the structured S2ML model is transformed into an instantiated one and 141 

then, this model is flattened (see Fig. 2) 142 

 143 

For example, the instantiated S2ML model is useful to perform model synchronization, to ensure the consistency between 144 

models coming from different engineering domains (see e.g. [12]). 145 

 146 

3) Inflating 147 

We call “inflating” the operation that produces the opposite effect of "flattening": it creates the instantiated model from the 148 

flattened one and reinjects the behaviour into this model (see Fig. 2).  149 

We use this operation reinject the generated stochastic Boolean equations into the original structure of the model. 150 

 151 

 152 

B. AltaRica 3.0 modelling language 153 

AltaRica 3.0 is a modelling language dedicated to probabilistic safety analyses of complex technical systems [1]. As 154 

mentioned previously, AltaRica 3.0 belongs to “S2ML + X” family of modelling languages and is the result of the 155 

combination of S2ML (System Structure Modeling Language), a set of object-oriented and prototype-oriented constructs to 156 

structure models, and the mathematical framework of GTS (Guarded Transition Systems): 157 

 158 

AltaRica 3.0 = S2ML + GTS 159 

 160 

1) Guarded Transition Systems 161 

Guarded transition systems belong to the family mathematical models of computation gathered under the generic term of 162 

(stochastic) finite-state machines or (stochastic) finite-state automata. They have been introduced in [4] and later refined in 163 

[5].  164 

 165 

A Guarded Transition system is a quintuple <V, E, T, A, i>, where 166 

 V is a set of state and flow variables, 167 

 E is a set of events, for example,  representing failures, repairs of components or system reconfigurations or 168 

operator actions; 169 
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 T is a set of transitions, each transition is triple <e, G, P>, where e is an event, G is Boolean expression built over V, 170 

called a guard, and P is an instruction that modifies the value of state variables and is called post-condition; 171 

 A is an assertion, an instruction to modify the value of flow variables, 172 

 i is a default assignment of state and flow variables. 173 

 174 

The internal state of components is represented by state variables. The changes of state are possible when, and only when, an 175 

event occurs. The occurrence of an event updates the values of the variables, by the firing of a transition. Dynamic 176 

reconfiguration can be represented using transitions. 177 

Flow variables are used to model information circulating between nodes of a model. Their values are calculated from the values 178 

of state variables thanks to a mechanism described by means of the so-called assertion. The assertion is executed after each 179 

transition firing. Flow variables and assertions make it possible to easily represent failure propagations in the system. 180 

GTS is a compositional modelling formalism, so it is possible to create models of individual components and to assemble them. 181 

Probability distributions can associated with events in order to create timed and stochastic models.  182 

2) AltaRica 3.0 model of the tracking system 183 

To create AltaRica 3.0 model of a tracking system given Fig. 1, we first define basic classes. They are defined in Fig. 3.  184 

 185 
class BasicBlock 

  Boolean vsFailed (init = false); 

  event evFail_loss (delay = exponential(pLambda)); 

  parameter Real pLambda = 1.0e-4; 

 

  transition 

    evFail_loss: not vsFailed -> vsFailed := true; 

end 

class BasicInOutBlock 

  extends BasicBlock; 

  Boolean vfIn, vfOut (reset = false); 

  assertion 

    vfOut:= vfIn and not vsFailed; 

end 

class AcquisitionBlock 

  extends BasicInOutBlock(pLambda = pAcqLambda); 

  parameter Real pAcqLambda = 1.23e-4; 

end 

class Calculator 

  extends BasicBlock (evFail_loss.delay = Weibull(pAlpha, pBeta)); 

  parameter Real pAlpha = 5.67e+4; 

  parameter Real pBeta = 3; 

 

  Boolean vfIn1, vfIn2, vfOut (reset = false); 

  assertion 

    vfOut := (vfIn1 or vfIn2) and not vsFailed; 

end 

class Voter 

  extends BasicBlock (pLambda = pVoterLambda); 

  parameter Real pVoterLambda = 2.64e-7; 

  Boolean vfIn1, vfIn2, vfIn3, vfOut (reset = false); 

  assertion 

    vfOut := (#(vfIn1, vfIn2, vfIn3) >= 2) and not vsFailed; 

end 

Fig. 3. AltaRica 3.0 model of basic components. 186 

We define a class BasicBlock that represents the behaviour of basic components. In this class we define a Boolean state variable 187 

vsFailed, its value equals to false in the initial configuration. An event evFail_loss represents the failure of the component. The 188 

probability of occurrence of this event is exponentially distributed with a failure rate given by the parameter pLambda. A 189 

transition labelled by the event evFail_loss defines how changes the state variable vsFailed. 190 

Then we define a class BasicInOutBlock, which extends BasicBlock and adds two Boolean flow variables vfIn and vfOut 191 

and an assertion. 192 

Finally, we define classes Calculator, AcquisitionBlock and Voter. All of them inherits from BasicBlock and add some 193 

specific behaviour.  194 

 195 

The next step is to define the AltaRica 3.0 models of the Acquisition module and LogicSolver. Here we use 196 

class/instantiation mechanism to reuse models. We define a class AcquisitionModule composed of two instances of the class 197 

AquisitionBlock A1 and A2 and two instances of the class Calculator C1 and C2. It also contains an assertion, which 198 
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represents connections between the components. We also define a class LogicSolver, composed of two instances of the class 199 

Voter V1 and V2 and two instances of the class Calculator D1 and D2, an assertion describes connections between these 200 

components as given in Fig. 1. 201 

 202 
class AcquisitionModule 

  AcquisitionBlock A1, A2; 

  Calculator C1, C2; 

  assertion 

    C1.vfIn1 := A1.vfOut; 

    C1.vfIn2 := A2.vfOut; 

    C2.vfIn1 := A1.vfOut; 

    C2.vfIn2 := A2.vfOut; 

end  

class LogicSolver 

  Voter V1, V2; 

  Calculator D1 (pAlpha = 3.29+6); 

  Calculator D2 (pAlpha = 3.29+6); 

 

  assertion 

    D1.vfIn1 := V1.vfOut; 

    D1.vfIn2 := V2.vfOut; 

    D2.vfIn1 := V1.vfOut; 

    D2.vfIn2 := V2.vfOut; 

end 

Fig. 4. AltaRica 3.0 model of the acquisition module and of the logic solver. 203 

We could also use prototype/cloning mechanism instead of class/instance to reuse models. 204 

The model of the whole system is given Fig. 5. It is composed of three instances of the class AcquisitionModule M1, M2 205 

and M3, and an instance of the class LogicSolver LS. Assertion defines connections between all the components. 206 

 207 
block TrackingSystem 

  AcquisitionModule M1; 

  AcquisitionModule M2; 

  AcquisitionModule M3; 

  LogicSolver LS; 

 

  Boolean S1, S2 (reset = false); 

 

  assertion 

    S1 := true; 

    S2 := true; 

    M1.A1.vfIn := S1; 

    M1.A2.vfIn := S2; 

    M2.A1.vfIn := S1; 

    M2.A2.vfIn := S2; 

    M3.A1.vfIn := S1; 

    M3.A2.vfIn := S2; 

    LS.V1.vfIn1 := M1.C1.vfOut; 

    LS.V1.vfIn2 := M2.C1.vfOut; 

    LS.V1.vfIn3 := M3.C1.vfOut; 

    LS.V2.vfIn1 := M1.C2.vfOut; 

    LS.V2.vfIn2 := M2.C2.vfOut; 

    LS.V2.vfIn3 := M3.C2.vfOut; 

 

  observer Boolean oFailed = not LS.D1.vfOut and not LS.D2.vfOut;  

end 

Fig. 5. AltaRica 3.0 model of the tracking system (main block) 208 

Once created, this model can be assessed by different tools. In this model we use composition, inheritance and class/instance 209 

method to reuse models. 210 

The model given Fig. 5 is a structured model in the sense of S2ML structured model. As explained in the previous section, it 211 

is semantically equivalent to an instantiated model given Fig. 6.  212 

 213 

 214 

 215 
block TrackingSystem 

  block M1 

    block A1 
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      // behaviour of the block A1 

    end 

    block A2 

      // behaviour of the block A2 

    end 

    block C1 

      // behaviour of the block C1 

    end 

    block C2 

      // behaviour of the block C2 

    end 

    assertion 

      // assertion of the block M1 

  end 

  block M2 

    block A1 

      // behaviour of the block A1 

    end 

    block A2 

      // behaviour of the block A2 

    end 

    block C1 

      // behaviour of the block C1 

    end 

    block C2 

      // behaviour of the block C2 

    end 

    assertion 

      // assertion of the block M2 

  end 

  block M3 

    block A1 

      // behaviour of the block A1 

    end 

    block A2 

      // behaviour of the block A2 

    end 

    block C1 

      // behaviour of the block C1 

    end 

    block C2 

      // behaviour of the block C2 

    end 

    assertion 

      // assertion of the block M3 

  end 

  block LS 

    block V1 

      // behaviour of the block V1 

    end 

    block V2 

      // behaviour of the block V2 

    end 

    block D1 

      // behaviour of the block D1 

    end 

    block D2 

      // behaviour of the block D2 

    end 

    // assertion of the block LS 

  end 

  assertion 

   // assertion of the block TrackingSystem 

end 

Fig. 6. Instantiated AltaRica 3.0 model of the tracking system 216 
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C. New Open-PSA 217 

The new Open-PSA format has been proposed in [9]. It is a result of a combination of S2ML (System Structure Modelling 218 

Language) and SBE (Stochastic Boolean Equations), the underlying mathematical formalism of Fault Trees and Reliability 219 

Block Diagrams: 220 

 221 

New Open-PSA = S2ML + SBE 222 

 223 

New Open-PSA provides constructs to represent Stochastic Boolean equations: 224 

 Boolean state variables or basic events (keyword “state” or “basic-event”, they represent basic events of Fault 225 

Trees); 226 

 Boolean flow variables or gates (keyword “gate” or “flow”, they represent intermediate events of Fault Trees); 227 

 Probability distributions (they are associated to state variables, for example, exponential, Weibull, etc.); 228 

 Parameters (keyword “parameter”, can be defined and used in the probability distributions); 229 

 Boolean equations (usual logical operators are available, for example and, or, k/n, etc.). 230 

 231 

 232 

IV. COMPILATION OF ALTARICA 3.0 MODELS INTO BOOLEAN EQUATIONS 233 

A. Compilation algorithm and its improvement 234 

 235 

 236 

 

Fig. 7. Compilation algorithm 237 

The initial algorithm to compile AltaRica DataFlow models into Boolean equations has been proposed in [7]. It has been 238 

extended to take into account AltaRica 3.0 models with bidirectional flows and loops in the assertion in [8]. Another 239 

improvement of the algorithm concerning a more compact representation of generated Boolean equations has been proposed 240 

in [10].  241 

 242 

The compilation algorithm goes in several steps as illustrated in Fig. 7: 243 

 First, AltaRica 3.0 models are flattened, i.e. transformed into a Guarded Transition Systems (GTS), a model without 244 

structure, composed of variables, events, transitions, assertions and initial assignment (see Step 1 of Fig. 7); 245 

 Second, the obtained GTS is partitioned into independent Guarded Transition Systems and an independent assertion 246 

(see Step 2 of Fig. 7); 247 

 Third, reachability graphs are generated for the independent guarded transition systems and they are compiled into 248 

stochastic Boolean equations (see steps 3 and 4 of Fig. 7); 249 

 Then, the independent assertion is also compiled into stochastic Boolean equations see Step 5 of Fig. 7). 250 
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The obtained system of stochastic Boolean equations is a flattened model without any structure as the input guarded transition 251 

system. We added a new step in the compilation algorithm (see Step 6 of Fig. 7), which is called “Inflating” and which 252 

transforms the flattened stochastic Boolean equations into a structured SBE model. This step produces the opposite effect of 253 

"flattening": it reinjects the generated stochastic Boolean equations into the original structure of the model. This makes it 254 

possible to obtain a Boolean model close to a hierarchical reliability block diagram, which is directly readable by the analyst. 255 

 256 

Finally, we transform an “S2ML+GTS” model into “S2ML + SBE” model. Both models have the same structure. 257 

 258 

 259 

B. Application to the illustrative example: the tracking system 260 

 261 

An extract of stochastic Boolean equations generated from the AltaRica 3.0 model of the Tracking System (see Fig. 5) is given 262 

Fig. 8. As you can see, the resulting model is a hierarchical reliability block diagram, which has the same structure as the 263 

instantiated AltaRica 3.0 model (see Fig. 6). The behaviour of each block is described by SBE (Stochastic Boolean equations). 264 

 265 
block TrackingSystem 

  gate S1 = true; 

  gate S2 = true; 

  gate not_oFailed = LS.D1.vfOut or LS.D2.vfOut; 

  gate oFailed = LS.D1.not_vfOut and LS.D2.not_vfOut; 

  block M1 

 block A1 

  gate vfIn = owner.owner.S1; 

  gate not_vfOut = vfIn and vsFailed; 

  gate vfOut = vfIn and not_vsFailed; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = exponential(pLambda, mission-time); 

  parameter pLambda = pAcqLambda; 

  parameter pAcqLambda = 0.000123; 

 end 

 block A2 

  gate vfIn = owner.owner.S2; 

  gate not_vfOut = vfIn and vsFailed; 

  gate vfOut = vfIn and not_vsFailed; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = exponential(pLambda, mission-time); 

  parameter pLambda = pAcqLambda; 

  parameter pAcqLambda = 0.000123; 

 end 

 block C1 

  gate not_vfIn1 = owner.A1.not_vfOut; 

  gate vfIn1 = owner.A1.vfOut; 

  gate not_vfIn2 = owner.A2.not_vfOut; 

  gate vfIn2 = owner.A2.vfOut; 

  gate Gate37 = not_vfIn1 and not_vfIn2; 

  gate Gate40 = vfIn1 and not_vsFailed; 

  gate Gate39 = vfIn2 and not_vsFailed; 

  gate not_vfOut = Gate37 or vsFailed; 

  gate vfOut = Gate40 or Gate39; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = Weibull(pAlpha, pBeta, mission-time); 

  parameter pAlpha = 56700; 

  parameter pBeta = 3; 

 end 

 block C2 

  gate not_vfIn1 = owner.A1.not_vfOut; 

  gate vfIn1 = owner.A1.vfOut; 

  gate not_vfIn2 = owner.A2.not_vfOut; 

  gate vfIn2 = owner.A2.vfOut; 

  gate Gate42 = not_vfIn1 and not_vfIn2; 

  gate Gate45 = vfIn1 and not_vsFailed; 

  gate Gate44 = vfIn2 and not_vsFailed; 

  gate not_vfOut = Gate42 or vsFailed; 
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  gate vfOut = Gate45 or Gate44; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = Weibull(pAlpha, pBeta, mission-time); 

  parameter pAlpha = 56700; 

  parameter pBeta = 3; 

 end 

  end 

  block M2 

    // Stochastic Boolean equations generated for M2(similar to those generated for M1) 
  end 

  block M3 

    // Stochastic Boolean equations generated for M3(similar to those generated for M1) 
  end 

  block LS 

 block V1 

  gate not_vfIn1 = owner.owner.M1.C1.not_vfOut; 

  gate vfIn1 = owner.owner.M1.C1.vfOut; 

  gate not_vfIn2 = owner.owner.M2.C1.not_vfOut; 

  gate vfIn2 = owner.owner.M2.C1.vfOut; 

  gate not_vfIn3 = owner.owner.M3.C1.not_vfOut; 

  gate vfIn3 = owner.owner.M3.C1.vfOut; 

  gate Gate11 = not_vfIn2 or not_vfIn3; 

  gate Gate14 = not_vfIn1 and Gate11; 

  gate Gate12 = not_vfIn2 and not_vfIn3; 

  gate Gate17 = vfIn2 and not_vsFailed; 

  gate Gate16 = vfIn3 and not_vsFailed; 

  gate Gate18 = Gate17 or Gate16; 

  gate Gate20 = vfIn1 and Gate18; 

  gate Gate19 = vfIn2 and vfIn3 and not_vsFailed; 

  gate not_vfOut = Gate14 or Gate12 or vsFailed; 

  gate vfOut = Gate20 or Gate19; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = exponential(pLambda, mission-time); 

  parameter pLambda = pVoterLambda; 

  parameter pVoterLambda = 2.64e-07; 

 end 

       block V2 

 // Stochastic Boolean equations generated for V2 (similar to V1) 
 end 

 block D1 

  gate not_vfIn1 = owner.V1.not_vfOut; 

  gate vfIn1 = owner.V1.vfOut; 

  gate not_vfIn2 = owner.V2.not_vfOut; 

  gate vfIn2 = owner.V2.vfOut; 

             gate Gate1 = not_vfIn1 and not_vfIn2; 

             gate Gate4 = vfIn1 and not_vsFailed; 

             gate Gate3 = vfIn2 and not_vsFailed; 

  gate not_vfOut = Gate1 or vsFailed; 

  gate vfOut = Gate4 or Gate3; 

  gate not_vsFailed = true; 

  gate vsFailed = evFail_loss; 

  basic-event evFail_loss = Weibull(pAlpha, pBeta, mission-time); 

  parameter pAlpha = 3.29 + 6; 

  parameter pBeta = 3; 

 end 

 block D2 

 // Stochastic Boolean equations generated for D2 (similar to D1) 
 end  

  end 

end 

Fig. 8. Stochastic Boolean equations generated from AltaRica 3.0 model of the Tracking system 266 

The Minimal Cut Sets are given in the following table: 267 

Order MCS 

2 LS.V1.evFail_loss LS.V2.evFail_loss 

LS.D1.evFail_loss LS.D2.evFail_loss 

3 LS.V1.evFail_loss M1.C2.evFail_loss M2.C2.evFail_loss 
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LS.V1.evFail_loss M1.C2.evFail_loss M3.C2.evFail_loss 

LS.V1.evFail_loss M2.C2.evFail_loss M3.C2.evFail_loss 

M2.C1.evFail_loss M3.C1.evFail_loss LS.V2.evFail_loss 

M1.C1.evFail_loss M2.C1.evFail_loss LS.V2.evFail_loss 

M1.C1.evFail_loss M3.C1.evFail_loss LS.V2.evFail_loss 

4 M1.A1.evFail_loss M1.A2.evFail_loss M2.A1.evFail_loss M2.A2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M2.C1.evFail_loss M2.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M3.C1.evFail_loss M2.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M2.C1.evFail_loss M3.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M3.C1.evFail_loss M3.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M2.C1.evFail_loss LS.V2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss M3.C1.evFail_loss LS.V2.evFail_loss 

M1.C1.evFail_loss M2.A1.evFail_loss M2.A2.evFail_loss M3.C2.evFail_loss 

M1.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss M2.C2.evFail_loss 

M1.C1.evFail_loss M2.C1.evFail_loss M2.C2.evFail_loss M3.C2.evFail_loss 

M1.C1.evFail_loss M3.C1.evFail_loss M2.C2.evFail_loss M3.C2.evFail_loss 

M1.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss M1.C2.evFail_loss 

M1.C1.evFail_loss M2.A1.evFail_loss M2.A2.evFail_loss M1.C2.evFail_loss 

M1.C1.evFail_loss M2.C1.evFail_loss M1.C2.evFail_loss M2.C2.evFail_loss 

M1.C1.evFail_loss M3.C1.evFail_loss M1.C2.evFail_loss M2.C2.evFail_loss 

M1.C1.evFail_loss M2.C1.evFail_loss M1.C2.evFail_loss M3.C2.evFail_loss 

M1.C1.evFail_loss M3.C1.evFail_loss M1.C2.evFail_loss M3.C2.evFail_loss 

M1.C1.evFail_loss M2.A1.evFail_loss M2.A2.evFail_loss LS.V2.evFail_loss 

M1.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss LS.V2.evFail_loss 

M2.A1.evFail_loss M2.A2.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss 

M2.A1.evFail_loss M2.A2.evFail_loss M3.C1.evFail_loss M3.C2.evFail_loss 

M2.A1.evFail_loss M2.A2.evFail_loss M3.C1.evFail_loss M1.C2.evFail_loss 

M2.A1.evFail_loss M2.A2.evFail_loss M3.C1.evFail_loss LS.V2.evFail_loss 

M2.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss M2.C2.evFail_loss 

M2.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss M1.C2.evFail_loss 

M2.C1.evFail_loss M3.A1.evFail_loss M3.A2.evFail_loss LS.V2.evFail_loss 

M2.C1.evFail_loss M3.C1.evFail_loss M2.C2.evFail_loss M3.C2.evFail_loss 

M2.C1.evFail_loss M3.C1.evFail_loss M1.C2.evFail_loss M2.C2.evFail_loss 

M2.C1.evFail_loss M3.C1.evFail_loss M1.C2.evFail_loss M3.C2.evFail_loss 

M2.A1.evFail_loss M2.A2.evFail_loss LS.V1.evFail_loss M3.C2.evFail_loss 

M3.A1.evFail_loss M3.A2.evFail_loss LS.V1.evFail_loss M2.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss LS.V1.evFail_loss M2.C2.evFail_loss 

M1.A1.evFail_loss M1.A2.evFail_loss LS.V1.evFail_loss M3.C2.evFail_loss 

M3.A1.evFail_loss M3.A2.evFail_loss LS.V1.evFail_loss M1.C2.evFail_loss 
M2.A1.evFail_loss M2.A2.evFail_loss LS.V1.evFail_loss M1.C2.evFail_loss 

 268 

V. CONCLUSION AND PERSPECTIVES 269 

AltaRica 3.0 is a modelling language dedicated to probabilistic safety analyses of complex technical systems. It is integrated 270 

in AltaRica 3.0 Workshop, a modelling environment that provides several tools for processing AltaRica 3.0 models: an 271 

interactive simulator, a stochastic simulator, a generator of critical sequences as well as a compiler to stochastic Boolean 272 

equations. 273 

In this article, we presented the improvement of this compilation algorithm. We added a new step to the compilation process. 274 

This step, which could be called "inflating", produces the opposite effect of "flattening": it reinjects the generated stochastic 275 

Boolean equations into the original structure of the model. This makes it possible to obtain a Boolean model close to a 276 

hierarchical reliability block diagram, which is directly readable by the analyst. 277 

This new compilation algorithm reinforces the AltaRica 3.0 technology and thereby the so-called model-based approach for 278 

dependability analyses. 279 

 280 

REFERENCES 281 

 282 

[1] M. Batteux, T. Prosvirnova & A. Rauzy. AltaRica 3.0 in ten modelling patterns. International Journal of Critical Computer-283 

Based Systems. Inderscience Publishers. Vol. 9, Num. 1-2, pp 133-165, 2019 284 

[2] Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy. From Models of Structures to Structures of Models. IEEE 285 

International Symposium on Systems Engineering (ISSE 2018). IEEE. Roma, Italy. October, 2018. 286 

doi:10.1109/SysEng.2018.8544424.  Best paper award 287 

[3] Antoine Rauzy and Cecilia Haskins. Foundations for Model-Based Systems Engineering and Model-Based Safety 288 

Assessment. Journal of Systems Engineering. Wiley Online Library. 22. pp. 146–155. 2019. doi:10.1002/sys.21469. 289 



Congrès Lambda Mu 24 14 au 17 octobre 2024, Bourges 
 

[4] Antoine Rauzy. Guarded Transition Systems: a new States/Events Formalism for Reliability Studies. Journal of Risk and 290 

Reliability. Professional Engineering Publishing. 222:4. pp. 495–505. 2008. doi:10.1243/1748006XJRR177. 291 

[5] Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy. AltaRica 3.0 Assertions: the Why and the Wherefore. Journal of 292 

Risk and Reliability. Professional Engineering Publishing. 231:6. pp. 691-700. September, 2017. 293 

doi:10.1177/1748006X17728209. 294 

[6] Antoine Rauzy. Probabilistic Safety Analysis with XFTA. AltaRica Association. Les Essarts le Roi, France.  ISBN 978-295 

82-692273-0-7. 2020. 296 

[7] Antoine Rauzy. Modes Automata and their Compilation into Fault Trees. Reliability Engineering and System Safety. 297 

Elsevier. 78:1. pp. 1–12. October, 2002. doi:10.1016/S0951-8320(02)00042-X. 298 

[8] Tatiana Prosvirnova and Antoine Rauzy. Automated generation of Minimal Cutsets from AltaRica 3.0 models. 299 

International Journal of Critical Computer-Based Systems. Inderscience Publishers. 6:1. pp. 50–79. 2015. 300 

doi:10.1504/IJCCBS.2015.068852. 301 

[9] Michel Batteux, Tatiana Prosvirnova & Antoine Rauzy, The New Open-PSA Format: a Model-Based Approach, In Actes 302 

du congrès Lambda-Mu 22 (actes électroniques), IMdR. Le Havre, France. October, 2020. 303 

[10]  Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy, Advances in the simplification of Fault Trees automatically 304 

generated from AltaRica 3.0 model, In Stein Haugen and Anne Barros and Coen van Gulijk and Trond Kongsvik and Jan 305 

Erik Vinnem ed., Safe Societies in a Changing World, proceedings of European Safety and Reliability Conference (ESREL 306 

2018). Trondheim, Norway. pp 907–914, June, 2018. 307 

[11] Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. System Structure Modeling Language (S2ML). 2015. ⟨hal-308 

01234903⟩ 309 

[12] Michel Batteux, Jean-Yves Choley, Faïda Mhenni, Tatiana Prosvirnova & Antoine Rauzy, Synchronization of system 310 

architecture and safety models: a proof of concept, In Proceedings of the IEEE 2019 International Symposium on Systems 311 

Engineering (ISSE). Edinburgh, Scotland. October 2019. 312 

 313  314 

 

https://hal.science/hal-01234903
https://hal.science/hal-01234903

