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RÉSUMÉ/SUMMUARY 1 

This paper presents a method to compare different rolling stocks performances eradicating the bias introduced by different 2 

mission profiles (mileage and speed). Once the scope of study is defined (can be at train level, at subsystem level or lower), the 3 

starting point is to perform Reliability Growth models for each product, on a defined set of field data. Alstom uses the Crow-4 

AMSAA model which has a good ability to fit data, especially for the end of the observation. Then, it is possible to plot 5 

Reliability Growth Curves for each product by using a single and referenced mileage profile defined by the study. It is also 6 

necessary to suppress the speed influence on the failure intensities (generally measured in km-1) ; to do that a correction is done 7 

“as if” all the products had the same referenced commercial speed. Finally, this comparison is the introduction to a qualitative 8 

analysis to determine the best practices and best solutions in the reliability perspective. 9 

Cette publication présente une méthode de comparaison de performances de fiabilité de différents matériels roulants qui 10 

supprime le biais introduit par des profils de mission kilométriques et de vitesses qui sont nécessairement différents. Une fois 11 

le périmètre de l’étude établi, son point de départ est de réaliser des modèles de croissance de fiabilité sur des données de terrain 12 

pour chacun des produits sélectionnés. Alstom recommande le modèle de Crow-AMSAA pour sa capacité à ajuster les données, 13 

spécialement les derniers points d’observation. Dès lors, il devient possible de tracer les courbes de croissance de fiabilité sur 14 

un profil de mission kilométrique unique dit de référence. De manière analogue, on doit corriger l’influence des vitesses 15 

moyennes qui influent sur l’intensité de fiabilité (mesurée en km-1) ; la comparaison se déroule « comme si » les flottes de trains 16 

avaient la même vitesse moyenne. Au final, cette comparaison vise à lancer une analyse de causes qualitative devant déterminer 17 

les bonnes pratiques et les solutions pour garantir la fiabilité. 18 

 MOTS-CLEFS/KEY WORDS —  19 

Comparison, Reliability Growth, mission profile, Crow-AMSAA, and lessons learnt. 20 

I. INTRODUCTION 21 

In the Railway industry, reliability is a key performance and become more and more challenging. The customer targets 22 

become more and more stringent and intermediate objectives can also be defined. The customers want the best reliability as 23 

soon as possible after the manufacturer’s delivery. In this context, the rolling stock is one of the most critical systems in terms 24 

of reliability. The reason is mainly due to a high complexity and the integration of multiple functions. The financial risk for a 25 

company like Alstom is important. Indeed, the consequences of service perturbation are huge: potential penalties, fees, the cost 26 

of spare parts, maintenance workload, cash payment milestone or other contractual clauses. 27 

So, the management of reliability performance is critical. One way to manage this risk is to predict the performance and, by 28 
anticipation, take actions to optimize or improve the reliability. Practically there are 2 possible ways to perform this prediction 29 

 a theoretical one which is a combination of figures from supplier’s studies which is not addressed in this paper 30 

 another one use Return of EXperience performances from previous projects. 31 
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Ideally, both approaches are combined since the tender stage of the project. The first approach provides a steady state 32 

prediction. 33 

The second one could provide better confidence in the result but introduce bias due to the specific conditions of the projects. 34 

So at the company level, it is necessary to be able to capitalize this REX and get the best estimations from that. One use case 35 

is to use the REX to predict performance for a new projects since the tender stage  to estimate the risk of non-compliance. 36 

Another use case is to compare on field project performances and identify quantitatively which one is the best/worst product in 37 

a family; this is the topic of this article. Once this identification is done, the good and bad practices as well as the good and the 38 

bad solutions can bring  lesson learnt to improve the future products. 39 

The main challenge faced to perform this comparison is that every product is slightly different from each other, but, in 40 
addition, the customer mission profiles can also vary  (speeds, mileage, power on time, time in service,…), as well as the size of 41 
the fleet (can be between 10 to 50 trains), the  commercial service introduction planning of the train are different, the observed 42 
fleet mileages are different (between 3 and 15 million kilometers) and the various climates must be considered. So many different 43 
factors can influence the comparison. 44 

The goal of this method is to eradicate at least the bias introduced by the mission profile, that is to say the difference of 45 
mileage run by the fleets and the average commercial speeds. The main idea is to use the Reliability Growth Models and the 46 
referenced conditions of mileage and speed to simulate performances as if all products were operated in the same condition. In 47 
this way, the comparison is becoming possible and correct. This paper presents a methodology breakdown in 5 steps. 48 

II. REVUE DE LITERATURE  49 

[CROW] AMSAA Technical report n° 138 Reliability Analysis for complex, repairable systems, Larry Crow 75 50 

[IEC] IEC 61710:2013 Power law model – Goodness-of-fit tests and estimation methods 51 

[DUANE] "Learning Curve Approach To Reliability Monitoring," Duane, J.T. 64 52 

[TAN] MATHEMATICAL ASPECTS OF RELIABILITY GROWTH ANALYSIS, TANANKO, 2019 53 

 54 

III. METHODOLOGY OVERVIEW 55 

The proposed methodology is structured into five distinct steps, as illustrated in Figure 1: 56 

 57 

 58 

Fig. 1. Methodology Diagram 59 
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IV. DEFINE THE SCOPE AND THE GOAL OF THE ANALYSIS 60 

The initial step involves defining the objective of the analysis. This goal may originate from various sources such as a 61 
management directive, a tender requirement,  or internally from pure Reliability, Availability or Maintenance concerns. 62 

Possible objectives include: assessing whether the previous generation of metros performs better than the new one, 63 
determining the benchmark product within a certain range to offer customers, or demonstrating that a product meets or exceeds 64 
a benchmark standard. Once the objective is established, we identify the relevant projects for methodological development. This 65 
involves collecting raw data and key mission profile characteristics from the warranty phase, during which each incident's service 66 
impact is evaluated by both the customer and the manufacturer. The current method is not modifying the content of those data, 67 
the only action is to group all Service Affecting Failure (SAF) in a global one. Then we can plot the reliability in term failure 68 
intensity vs observed mileage. 69 

In the railway industry the Mean Distance Between Failure or the Failure intensity are used to measure the reliability. As 70 
defined in [IEC] like:  71 

𝐹𝐼 (t) =
𝑑(𝐸(𝑁(𝑡)))

𝑑𝑡
    (1)     72 

with N(t) the number of events and E(N(t)) the mean value of events. 73 

We cannot use directly this formula, we have to transform it into a mileage base: 74 

𝐹𝐼 (km) =
𝑑(𝐸(𝑁(𝑘𝑚)))

𝑑𝑘𝑚
      (2)   75 

Thus the estimator is: 76 

𝐹𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟(km) = 𝑁(𝑘𝑚)/𝑘𝑚  (3)       77 

This is what is usually measured in the projects. 78 

For illustration, consider a study aimed at comparing two metro fleets. 79 

Metro 1 comprises a fleet of 23 trains observed over a 3 million km cumulated distance. By plotting the Service Affecting 80 
Failure intensity vs mileage it comes fig 2: 81 

 82 

Fig. 2. Measured SAF Failure Intesnsity for Metro 1  83 

Metro 2 consists of a fleet of 50 trains, observed over 16 million km cumulated distance see fig 3: 84 

 85 

Fig. 3. Measured SAF Failure Intesnsity for Metro 2 86 
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Reliability Growth (RG) curves are highly useful for evaluating reliability over time, addressing questions such as: 'Is the 87 
product reaching its optimal performance? What are its intermediate performance milestones (e.g., after X months or Y 88 
kilometers)? What is its initial reliability?' The mean value may not accurately represent the best performance achievable, 89 
highlighting the importance of RG curves. 90 

For the objective of this analysis—comparing Metro 1 and 2—we attempt a direct comparison by overlaying both curves on 91 
the same graph, aligning them along the same mileage on the X-axis, as shown in: Fig 4:  92 

 93 

Fig. 4. Direct Performance Comparison with measured Failure Intensities 94 

 95 

Initially, it seems that Metro 2 is significantly more reliable than Metro 1, with Metro 1's failure intensity reaching only 26% 96 
of that of Metro 2. However, this quick assessment warrants scrutiny. The observation periods differ significantly: Metro 1's data 97 
is capped at 3 million kilometers (marking the end of its contractual warranty period), compared to 16 million kilometers for 98 
Metro 2. This discrepancy raises questions: How would Metro 1 perform over an observation period equivalent to Metro 2's? 99 
Has Metro 1 achieved its optimal performance? Furthermore, the quantity of observations differs between the two fleets, resulting 100 
in lower confidence in the reliability assessment for Metro 1 compared to Metro 2. Such a 'direct comparison' approach, while 101 
once considered state-of-the-art, is precisely what the methodology introduced in this article aims to refine. 102 

. 103 

V. RELIABILITY GROWTH MODELLING 104 

The subsequent step in the methodology involves calculating a Reliability Growth (RG) model for each product, offering 105 
several advantages. Firstly, the model affords a 50% confidence level for any given distance. Secondly, it effectively filters the 106 
randomness of the observations. Actually, the number of observed events N(t) can be considered as a random variable with a 107 
given spread. RG models are able to predict the average value of  N(t). 108 

There are two main models: 109 

 Duane described in  [DUANE] 110 

 Crow-AMSAA described in [CROW] 111 

The difference between those and the assumptions are detailed in [TAN]. 112 

In a few words and put in the Railway scope of application Duane model postulates that: 113 

𝐿𝑛(𝑁/𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚 ) = 𝐿𝑛(𝜆) − 𝛼 ∗ 𝐿𝑛(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚)        (4) 114 

 α is the shape parameter 115 

 λ is the scale parameter 116 
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 117 

Fig. 5. Duane Parameters estimation 118 

By plotting 𝐿𝑛(𝑁/𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚 )  on y axle and 𝐿𝑛(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚)  on x axle the parameter’s estimation is 119 
straightforward.    120 

𝛼 = −𝑆𝑙𝑜𝑝𝑒         (5) 121 

𝜆 = 𝐸𝑥𝑝(Y intercept for x = 1) (6) 122 

This can be done with special Reliability Tools or with a spreadsheet with a linear regression. The modelling error can be  123 
evaluate with the correlation factor R2 taken from this linear regression. 124 

Dr. Larry Crow converted the Duane model into a stochastic model using a Weibull distribution as failure intensity function 125 
[CROW].  126 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑙𝑒𝑒𝑡(𝑘𝑚) = 𝜆0 ∗ 𝛽 ∗ (𝑘𝑚) 𝛽−1        (7) 127 

 β is the shape parameter 128 

 λ0 is the scale parameter 129 

in this model the Total Number of events is no more deterministic (as in Duane) and is a random variable.  130 

The model parameters (β, λ0) are rendered independent of the original mileage, enabling the derivation of an analytical 131 
formula for failure intensity (1) from [IEC]  132 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑙𝑒𝑒𝑡(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚) = 𝜆0 ∗ (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚) 𝛽−1        (8) 133 

The parameters estimation uses the Maximum Likelihood which improve the fitting capabilities compare to the Duane 134 
estimation. In this case the calculation is more sophisticated. The algorithm is provided in [IEC] time data for group of relevant 135 
failures. Each month, one counts the relevant events for the current month. In addition the actual mileage run by the fleet is 136 
collected. This can be done with special Reliability Tools or with a spreadsheet with optimisation capabilities. 137 

This methodology advocates for the use of the Crow-AMSAA model. With the type of data we analyze, it has been observed 138 
that this model possesses a superior capability to accurately fit data towards the end of the observation period compared to the 139 
Duane model. In figure 6 we present an example of fitting capabilities comparing Duane and Crow-AMSAA for the same set of 140 
data. We calculate the errors at each km:  141 

    142 

𝐸𝑟𝑟𝑜𝑟 (𝑘𝑚) = |
𝑁𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑘𝑚)

𝑘𝑚
− 𝑀𝑜𝑑𝑒𝑙(𝑘𝑚)|       (9) 143 

 144 

The Duane model, due to its estimation technique, generates an average prediction that considers the entire history of the 145 
process. Given that reliability experience (REX) curves may exhibit irregularities at the start — attributable to gradual train 146 
deliveries and the establishment of the customer's operations — the Duane model can introduce discrepancies. The end of the 147 
observation is the most important for the manufacturer because it represents  the optimal performances of the product for which 148 
the customer set a target. With the Duane model the weight of the beginning and the end of the observation are the same, which 149 
leads to pessimistic results, most of the time. 150 
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 151 

Fig. 6. Metro 1 : Example of Fitting Performances with Crow-AMSAA and Duane algorithms 152 

VI. ASSESS THE RELIABILITY WITH A REFERENCE PROFILE 153 

Once (βi,λ0i) parameters are estimated with (i) the number of projects selected as similar and relevant for the scope of the 154 
study (2 in our example),  it becomes possible to calculate or plot dedicate curves with any fleet mileage (different from the 155 
original ones by using the one for a new tender for example) or to have a direct analytical estimation (1). Indeed (βi,λ0i) are 156 
independent from the original fleet mileage. They represent the product reliability and also the company’s efforts to reach that 157 
level of performance. The more effort is done the more βi is close to 0.  158 

So the projection done in another operational profile assume that the initial reliability λ0i have the same order of magnitude 159 
and that the company’s effort βi will be same. Those conditions are explicitly mentioned to the tender team. In case of the fleet 160 
mileage is too low (for example if the steady state is not reached or with censored data) or the representativeness of the data is 161 
not ensured, we can also calculate the confidence bounds. In the illustration it is not necessary.   162 

To make a comparison we can choose the same mission profile for two metros. Thus we can select a controlled and Reference 163 
profile. For this we can use a typical metro profile (10 000 km/month for example) or select according to a specific customer 164 
hypothesis which is interesting for new tender. In our example let’ us assume that the expected optimal reliability will be reached 165 
after 7 Millions km. 166 

 167 

Fig. 7. Performance comparison with a reference mileage profile 168 

 169 
These curves confirm that Metro 2 outperforms Metro 1 over a distance of 7 million km, despite their respective reliability 170 

growths. Notably, Metro 1 exhibits superior initial performance and reaches its steady state more rapidly than Metro 2. Utilizing 171 
these curves to evaluate both optimal and intermediate performances is particularly useful, as these metrics can significantly 172 
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impact contractual agreements with customers. When assessing optimal performance and the timeline to achieve it, it becomes 173 
clear that the average failure rate is not an appropriate KPI for either metro. 174 

Furthermore, the direct comparison indicates the smallest performance gap between Metro 2 and Metro 1 is 26%, implying 175 
that Metro 2's performance does not exceed 26% of Metro 1's. However, under this standardized mission profile, the gap narrows 176 
to 19%. This suggests that when evaluated under reference conditions, the discrepancy is greater than initially observed through 177 
direct comparison. 178 

VII. AVERAGE SPEED CORRECTION 179 

With the previous step we have compared the performances as if both fleet were running in a same mileage condition. 180 
Similarly it is possible to use the time in operation or powered up time as a reference x axis. Another option is to make a focus 181 
on a given subsystem. If the method is applied with mileage as basis time can be used also depending on the need. 182 

Indeed in the railway industry and for the rolling stock, the reliability target is usually allocated by the customer in term of 183 
failure intensity. The target is a fixed value for a given time T (for example end of the fleet delivery + x months). This can be 184 
formalized in (10).  185 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑇𝑎𝑟𝑔𝑒𝑡𝐹𝑙𝑒𝑒𝑡(𝑇) =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝐹𝑙𝑒𝑒𝑡(𝑇)

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐹𝑙𝑒𝑒𝑡 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑇)
        (10) 186 

 187 

The underlying assumption is that the failure intensity is constant in time which is not the case on the real field conditions. 188 
This is a simplification for the specification. In project condition this target is check against field estimation. From (10) one can 189 
link the cumulated fleet mileage with the average speed and T cumulated operating time: 190 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑇𝑎𝑟𝑔𝑒𝑡𝐹𝑙𝑒𝑒𝑡(𝑇) =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝐹𝑙𝑒𝑒𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑𝐹𝑙𝑒𝑒𝑡 ∗  𝑇
        (11) 191 

 192 

This simple calculation shows that the Failure intensity depends on the total mileage and then also to the average speed. The 193 
Average speed can be considered as a critical factor in fleet operations, varying widely among customers due to differences in 194 
timetables, track lengths, number of stations, and other factors. As indicated by (11), it significantly influences failure intensity. 195 
Therefore, it become possible to correct prediction considering the varying average speeds. 196 

Let’s take an example; assume that we want to predict the performance for a new product for a tender during a T period with 197 
an average speed of 35 km/h given by the customer in the contract. However, the best similar project with REX had an 27 km/h 198 
average speed. By having a higher average speed and knowing that failure occurrences are mainly time base, we can deduce that 199 
the performance of the new project will be higher than the old one for the same timeframe. So the problem is what would be the 200 
performance of the new project considering the “new” average speed is at 35 km/h and knowing that the REX is at 27 km/h? 201 

Analogous to adjusting for fleet mileage, we recommend calculating the failure intensity as if both fleets operated at a uniform 202 
average speed—a reference average speed. This approach is formalized  in equation (5). 203 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐹𝑙𝑒𝑒𝑡(𝑇) =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝐹𝑙𝑒𝑒𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∗ 𝑇
        (12) 204 

Calculated with (11): 205 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐹𝑙𝑒𝑒𝑡(𝑇) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑

∗ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑙𝑒𝑒𝑡  (𝑇)      (13) 206 

For our example for tender it comes: 207 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐹𝑙𝑒𝑒𝑡(𝑇) =
27 (𝑅𝐸𝑋)

35(𝑇𝑎𝑟𝑔𝑒𝑡)
∗ 𝑀𝑜𝑑𝑒𝑙 𝑅𝑒𝑥 𝐹𝑙𝑒𝑒𝑡  (𝑇)      (14) 208 

In this case we apply the target speed of a new project to a given REX, but it not the only application for your proposal. the 209 
original need is to compare respective performances. Let's apply this correction to the first comparison example, which is 210 
particularly notable due to the significant difference in speeds. Metro 2 operates on a long track with a substantial distance 211 
between two stations, unlike Metro 1. Consequently, Metro 2 has an average speed of 47 km/h, while Metro 1's average speed is 212 
only 28 km/h. We will conduct an analysis assuming an average speed of 35 km/h for both metros (35 km/h is the average speed 213 
set by the platform as key assumption). For each project (i) we plot (15) 214 

𝑀𝑜𝑑𝑒𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐹𝑙𝑒𝑒𝑡 𝑖 (𝑇) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑(𝑖)

35
∗ Model𝐹𝑙𝑒𝑒𝑡i (𝑇)      (15) 215 

 216 
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This correction results are in the following graph: 217 

 218 

Fig. 8. Comparion with corrected an reference Average Speed  219 

By doing this correction the gap between Metro 1 and 2 is reduced and goes to 32% : Metro 1 reaches at best 32% of Metro 220 
2 Failure intensity. Mathematically it is formalized in (16)  221 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝑙𝑒𝑒𝑡 𝑖  (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚)222 

= 𝜆0𝑖𝑅𝑒𝑥 ∗
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑(𝑖)

35
∗ (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑚) 𝛽𝑖−1        (16) 223 

In other words the speed correction change the scale parameter 𝜆0 (17): 224 

𝜆0𝑖 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜆0𝑖 𝑅𝑒𝑥 ∗
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 (𝑖)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑

        (17) 225 

The shape parameter ß is not affected by the speed considering that it rely on the process performance to detect and fix the 226 
systematic issues in the product. 227 

 228 

VIII. RESULTS 229 

This method is allowing the RAM Engineer to get the Rolling Stock performances in the same conditions for mileage and 230 
speed.  231 

Then, the remaining  gaps are due to certain customer sensitivity (customers are more or less demanding in term off 232 
performances), or  the climate, or the product itself: the way it was designed and manufactured but also the operational or 233 
maintenance practices. 234 

This is the starting point of a qualitative analysis which is looking for the root causes of those differences. This analysis shall 235 
be done with the warranty teams of each project to understand their difficulties, their organization, their good practices and lesson 236 
learnt. A multi project analysis is able to find common weaknesses and strengths and push a platform evolutions. 237 

IX. DISCUSSION AND OPEN POINTS 238 

It should be understood that this comparison does not determine which product is superior in absolute terms. Rather, it aims 239 
to correct for biases introduced by differing mission profiles. The key assumption is that the failure occurrence is mainly time 240 
based which is actually the case for almost all embedded devices (except for bogie). We can also face an issue in term of lack of 241 
data representativeness, or censored data, of, for example, a reduce period of observation. In this case both parameters might be 242 
affected that why we recommend to use confidence bounds. 243 

 Another limitation for this method does not account for other significant factors such as product architecture, customer 244 
expectations, climatic conditions, or variations in manufacturing and maintenance practices. A critical aspect is product 245 
architecture; for instance, metros can range from 2-car to 9-car configurations, each with differing numbers of subsystems like 246 
traction, braking systems, auxiliary power supplies, and air conditioning units. Comparing products with significant architectural 247 
differences—such as between a 2-car and a 9-car metro—might misleadingly suggest the larger is less reliable due to its 248 
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complexity. This methodology attempts to mitigate such bias during the initial scope definition and selection process. However, 249 
there are instances where a direct comparison is challenging due to the lack of comparable field data. In our analysis, comparing 250 
a 5-car to a 6-car metro assumes a level of comparability that may not exist in practice, potentially leading to inaccurate 251 
conclusions about reliability. Therefore, an ideal next step involves refining the methodology to better estimate and adjust for 252 
architectural biases. 253 

.        254 

X. CONCLUSION 255 

The methodology offers a structured approach to comparing the reliability performances of various rolling stocks, 256 
acknowledging that they operate under diverse conditions, such as differing numbers of trains, total mileage, and operating times. 257 
In the railway industry, identical mission profiles for two distinct fleets are highly improbable due to variations in infrastructure 258 
and schedules. Direct comparisons, therefore, lack the robustness needed for accurate gap measurement. Our proposed method 259 
involves comparing performance within a standardized mission profile, necessitating Reliability Growth (RG) modelling to 260 
simulate conditions of equal mileage and speed for all subjects. The preference for the Crow AMSAA model is due to its 261 
effectiveness in fitting data towards the observation's end, providing insights into the potential optimal performance against set 262 
contractual targets. This methodology lays the groundwork for a qualitative analysis (not covered here) aimed at identifying best 263 
practices and revealing specific products' strengths and weaknesses by first quantifying performance before exploring underlying 264 
causes. 265 
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