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1 Introduction

The green transformation of large economies is a ubiquitous topic in world politics. Its
urgency is driven by the increasingly severe effects of anthropogenic climate change and
its tremendous economic costs, e.g., see Stern (2007). Since the industrial and energy
sectors account for more than half of all greenhouse-gas emissions (Lee et al., 2023;
Friedlingstein et al., 2022), a central challenge for policymakers is to incentivise firms
to adopt less emission-intensive technologies. Green technologies are readily available
for most industries and are becoming more and more economically viable (Lee et al.,
2023). Emissions reduction enhances the competitiveness of firms by mitigating the
financial burden of carbon pricing and by aligning with consumers’ growing concern for
the environment.

Mitigating climate change involves an intricate intergenerational challenge. Although to-
day’s emissions jeopardise the welfare of all future generations, the decarbonisation of an
economy is an incremental process that must be harmonised with economic prosperity.
The abatement costs borne by present generations have to be weighed against the benefits
for future generations. Numerous contributions such as Stephan, Müller-Fürstenberger,
and Previdoli (1997); Howarth (2000); or Schneider, Traeger, and Winkler (2012) high-
light the suitability of overlapping-generations (OLG) models for addressing intergen-
erational aspects of climate economics. OLG models complement the more traditional
Ramsey-type growth models, which feature an infinitely-lived representative agent (ILA).
While it is well known that certain assumptions on altruism can generate an ‘observa-
tional equivalence’ between OLG and ILA models, e.g., see Barro (1974) and Schneider
et al. (2012), the extent to which this equivalence applies when intergenerational exter-
nalities such as climate change matter is unclear. The current debate on fighting climate
change demonstrates quite clearly that consumption and production decisions are driven
primarily by individual desires rather than altruistic motives for the benefit of future
generations.

Since the pioneering contributions by Howarth and Norgaard (1992) and John and Pec-
chenino (1994), a substantial body of literature has incorporated pollution externalities
into OLG models. The origins and effects of these externalities are modelled in various
ways. They can be caused by production (Howarth, 1998; Marini & Scaramozzino, 1995),
consumption (John & Pecchenino, 1994; John, Pecchenino, Schimmelpfennig, & Schreft,
1995; Ono, 1996), labour (Andersen, Bhattacharya, & Liu, 2020), energy use (Howarth
& Norgaard, 1992), or the extraction of natural resources (Mourmouras, 1991). In the
models by Howarth and Norgaard (1992); Andersen et al. (2020), and Goussebaïle (2024),
pollution reduces future output. In Gutiérrez (2008), it reduces consumption, whereas in
the model by John et al. (1995), pollution reduces welfare directly because agents have
environmental preferences.

Despite the abundance of OLG models in climate economics, analytically tractable multi-
sector models are rare. Rausch and Yonezawa (2023) compare the intergenerational wel-
fare effects of technology policies with those of carbon pricing in a setting with a green
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and a brown intermediate-goods sector. They find that a green technology policy, unlike
carbon pricing, may act as a capital subsidy that disproportionately benefits current gen-
erations at the expense of future generations. The model in Dao and Edenhofer (2018),
which, similar to Rausch and Yonezawa (2023) has two heterogeneous intermediate-goods
sectors, generates poverty-environment traps, i.e., steady states with a poor environmen-
tal quality and a low capital stock. The authors demonstrate that the optimal allocation
can be decentralised by taxing emissions and capital income. Poverty-environment traps
also occur in the multi-sector OLG model by Ikefuji and Horii (2007). In a setting with
a resource and a production sector, Karp and Rezai (2014) investigate the extent to
which environmental policies can achieve a Pareto improvement by changing asset prices.
However, since the capital stock is given exogenously, the model is not designed to study
climate policies. More elaborate models with multiple sectors require a numerical analy-
sis, e.g., see Kotlikoff, Kubler, Polbin, Sachs, and Scheidegger (2021).

This article examines the industrial decarbonisation in an analytically tractable two-
sector OLG model. In the spirit of Galor (1992), Diamond’s (1965) classical frame-
work is extended to two production sectors, a polluting brown and a non-polluting green
sector. Both sectors compete for capital and labour and produce the same good, but
pollution degrades the environment. Since agents have preferences over consumption and
the quality of the environment, pollution has a negative effect on the welfare of all fu-
ture generations. Using a novel parameterisation of the production-possibility frontier,
our approach naturally incorporates capital-intensity reversals. In contrast to existing
multi-sector models, an a-priori assumption on relative capital intensities, as for example
in Rausch and Yonezawa (2023), is not needed. In particular, our framework allows for
boundary factor allocations in which production is entirely green or entirely brown. To
the best of our knowledge, our article develops the first analytically tractable OLG model
with pollution externalities that includes two final sectors.

Without emission pricing, the market economy will not internalise the social cost of
pollution caused by the brown sector. To attain the social optimum, the brown output
must be reduced and agents must forgo consumption. Therefore, the welfare maximum
will, in general, deviate from the consumption maximum. This feature distinguishes our
model from the standard OLG model. Adopting the perspective of a social planner,
we investigate the trade-off between consumption and pollution abatement. We show
that there exists a uniquely determined optimal allocation and at least one welfare-
maximising steady state, i.e., a modified golden-rule steady state. Depending on the
sector-specific productivity, discount factors, and agents’ valuation of the externality, the
modified golden-rule steady state may be green, brown, or mixed. It turns out that
the steady-state pollution levels depend on the relationship between the marginal rate of
transformation and the marginal rate of substitution between consumption and pollution.
Since all three types of steady states may coexist, our model may help to explain the
existence of economies with high and with low pollution levels.

The main contribution of this article concerns the decentralisation of the optimal al-
location, which has important policy implications. We demonstrate that the optimal
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allocation can be implemented in the market economy by means of a balanced-budget
fiscal policy. This policy consists of an emissions tax that internalises the pollution exter-
nality by shifting production factors to the green sector, combined with intergenerational
transfers. The emissions tax stipulates the wage-rental ratio and thus determines the pro-
duction plan and the emissions level. Since the emissions tax reduces the factor incomes
by distorting factor prices, the tax receipts must be released to agents in order to offset
welfare losses. The intergenerational transfers enable the government to distribute the
tax receipts among the two generations and implement the optimal capital accumulation
path. This resolves the dynamic inefficiency inherent to all OLG models. In line with the
existing literature, e.g., see Jaimes (2023), we find that the optimal emissions tax rate is
equal to the sum of the discounted marginal damages incurred by all future generations.
Our analysis extends that of Dao and Davila (2014) who consider a one-sector OLG
model with a production externality and environmental preferences, demonstrating how
a golden-rule steady state can be implemented by means of various transfer schemes.

This article is organised as follows. The next section introduces the assumptions on
technologies and preferences and defines the economy’s production-possibility frontier.
In Section 3, we adopt the perspective of a benevolent social planner and establish the
optimal allocation and modified golden-rule steady states. The implementation of the
optimal allocation in a market economy through fiscal policy is addressed in Section 4.
Section 5 concludes. All proofs are collected in an appendix.

2 Model

We consider an overlapping-generations model with discrete time t = 0, 1, . . . ,∞ and two-
period lived agents. At the beginning of each period t ≥ 0, a new generation consisting
of a continuum of homogeneous agents with mass Nt ∈ R++ is born. The population
grows exponentially at the rate n ≥ 0, so that Nt = (1 + n)tN0.

2.1 Production

A single consumption-and-investment good is produced from the factors real capital Kt ≥
0 and labour Lt ≥ 0 by a non-polluting ‘green’ and a polluting ‘brown’ sector, indexed by
j = g, b, respectively. Each sector comprises a continuum of homogeneous, price-taking
firms. The brown sector’s production externality is explained in Section 2.3 below. The
workforce consists of young agents who supply one unit of labour inelastically, so that
Lt = Nt. Old agents are retired and consume the capital income generated by renting
capital to firms. Capital and labour can move frictionlessly between the sectors and are
paid their marginal products. The output good serves as the numeraire.

The production function of the representative firm in sector j = g, b is

Fj : R2
+ → R+, Y j = Fj(K

j, Lj),

where Y j ≥ 0 is the sector-specific output and Kj, Lj ≥ 0 are the sector-specific capital
and labour inputs. Assuming perfect substitutability, the economy’s total output of
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the good is Y = Y g + Y b. The technology in either sector has constant returns to
scale, meaning that both production functions Fg and Fb are linear homogeneous. Their
respective intensive forms fj : R+ → R+ obtain by setting

fj(k
j) := Fj

(
Kj

Lj , 1
)
, j = g, b,

where kj = Kj

Lj is the sector-specific capital-labour ratio. The marginal product of labour
wj : R+ → R+ is defined by

wj(k
j) := fj(k

j)− f ′
j(k

j)kj, j = g, b. (2.1)

The marginal rate of technical substitution (MRTS) between capital and labour is given
by the function Ωj : R+ → R+, defined by

Ωj(k
j) :=

wj(k
j)

f ′
j(k

j)
, j = g, b. (2.2)

Given the output price pjt > 0, the wage rate wt > 0, and the capital-rental rate rt > 0,
the profit-maximization problem of the representative firm j = g, b is

max
Kj ,Lj≥0

pjtFj(K
j, Lj)− rtK

j − wtL
j. (2.3)

The first-order conditions for the profit-maximising factor inputs (Kj
t , L

j
t) are

(i) pjt
∂Fj

∂K
(Kj

t , L
j
t) = pjtf

′
j(k

j
t )

!
= rt

(ii) pjt
∂Fj

∂L
(Kj

t , L
j
t) = pjtwj(k

j
t )

!
= wt,

(2.4)

showing that due to linear homogeneity, only the capital-labour ratio kjt is well defined
by the first-order conditions (2.4). Given any wage-rental ratio ωt =

wt

rt
, these reduce to

Ωj(k
j
t )

!
= ωt. (2.5)

Denote the social discount factor by 0 < γ < 1 and the capital depreciation rate by 0 <

δ ≤ 1, then we can introduce the following assumptions on the production technologies.

Assumption 1 (Technology).
The two production sectors j = g, b are characterised by the following properties.

(i) The production functions fj : R+ → R+ are twice continuously differentiable, strictly
increasing, f ′

j > 0, strictly concave, f ′′
j < 0, and satisfy

(a) lim
k→0

f ′
j(k) >

1+n
γ

− 1 + δ and (b) lim
k→∞

f ′
j(k) = 0. (2.6)

Moreover, capital is an essential production factor, that is, fj(0) = 0.
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(ii) The MRTS functions Ωj : R+ → R+ satisfy the boundary conditions

lim
k→0

Ωj(k) = 0 and lim
k→∞

Ωj(k) = ∞. (2.7)

Since Assumption 1 (i) implies that the MRTS functions Ωj, j = g, b, are strictly increas-
ing, the boundary conditions (2.7) ensure that the first-order condition (2.5) admits a
unique solution kjt for any given wage-rental ratio ωt ≥ 0. Condition (2.6) (a) is weaker
than the Inada condition lim

k→0
f ′
j(k) = ∞ and thus allows for CES production functions.

Condition (2.6) (b) is needed later to rule out unbounded economic growth.

2.2 Production-possibility frontier

Assumption 1 implies that there exist relative factor-demand functions κj : R+ → R+,
j = g, b, such that for any wage-rental ratio ωt ≥ 0, the first-order condition (2.5) is
satisfied, i.e.,

Ωj(κj(ωt)) = ωt. (2.8)

These functions stipulate the sector-specific capital-labour ratios, so that kgt = κg(ωt) and
kbt = κb(ωt). The corresponding labour shares ljt =

Lj
t

Lt
, j = g, b, are obtained as follows.

For each economy-wide capital-labour ratio kt ≥ 0, set

Ωmin(kt) := min
{
Ωg(kt),Ωb(kt)

}
and Ωmax(kt) := max

{
Ωg(kt),Ωb(kt)

}
. (2.9)

For each kt > 0 with Ωg(kt) ̸= Ωb(kt), the labour-share functions

ℓj(kt, ·) :
[
Ωmin(kt),Ωmax(kt)

]
→ [0, 1], j = g, b,

are then defined by setting

lgt = ℓg(kt, ωt) :=
κb(ωt)− kt

κb(ωt)− κg(ωt)
and lbt = ℓb(kt, ωt) :=

kt − κg(ωt)

κb(ωt)− κg(ωt)
, (2.10)

respectively. For each kt > 0 with Ωg(kt) ̸= Ωb(kt) and each wage-rental ratio ωt ∈[
Ωmin(kt),Ωmax(kt)

]
, the list (kgt , k

b
t , l

g
t , l

b
t) ≥ 0 defined by (2.8) and (2.10) is a feasible

factor allocation as it solves the market-clearing conditions in the capital and the labour
market

(a) kt = lgt k
g
t + lbtk

b
t and (b) 1 = lgt + lbt . (2.11)

Since, by (2.8), Ωg(k
g
t ) = Ωb(k

b
t ) is also satisfied, this factor allocation is (Pareto-)efficient

in the sense that the output of a sector cannot be raised without lowering the output of
the other sector.1 In particular,

ℓg
(
kt,Ωb(kt)

)
= ℓb

(
kt,Ωg(kt)

)
= 0 and ℓg

(
kt,Ωg(kt)

)
= ℓb

(
kt,Ωb(kt)

)
= 1,

1In the following, we will omit the word ‘Pareto’ in order to avoid confusion with the notion of
Pareto-optimality of the whole economy, introduced below.
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so that boundary factor allocations in which only one sector is producing are included.

For each kt ≥ 0 with Ωg(kt) = Ωb(kt), the market-clearing conditions (2.11) are satisfied
with kgt = kbt = kt and any feasible allocation of labour.

Our approach naturally incorporates capital-intensity reversals. The marginal rates of
technical substitution determine whether the green or the brown sector is more capital-
intensive. If Ωb(kt) < Ωg(kt), then

κg(ω) < kt < κb(ω) for all ω ∈
(
Ωb(kt),Ωg(kt)

)
,

and vice versa, if Ωg(kt) < Ωb(kt), then

κb(ω) < kt < κg(ω) for all ω ∈
(
Ωg(kt),Ωb(kt)

)
.

The production-possibility frontier may now be described as follows. For any kt > 0

with Ωg(kt) ̸= Ωb(kt) and any ωt ∈
[
Ωmin(kt),Ωmax(kt)

]
, the per-capita output of sector

j = g, b is stipulated by the function

yjt = yj(kt, ωt) := ℓj(kt, ωt)fj(κj(ωt)). (2.12)

In the non-generic case Ωg(kt) = Ωb(kt), the per-capita outputs are

ygt = lgt fg(kt) and ybt = (1− lgt )fb(kt), lgt ∈ [0, 1]. (2.13)

The production plan (ybt , y
g
t ) is called efficient because it is produced with an efficient

factor allocation. Since for any fixed kt > 0, the output functions (2.12) and (2.13) are
invertible2, each efficient production plan (ybt , y

g
t ) defines a uniquely determined efficient

factor allocation. As a consequence, the function T : D → R+, defined by

ygt = T (kt, y
b
t ) :=

{
yg
(
kt, y

−1
b (kt, y

b
t )
)

if Ωg(kt) ̸= Ωb(kt)

fg(kt)− fg(kt)

fb(kt)
ybt if Ωg(kt) = Ωb(kt)

, (2.14)

where
D :=

{
(k, yb) ∈ R++ × R+

∣∣ yb ≤ fb(k)
}
,

is well defined. For any kt > 0, the production plan (ybt , T (kt, y
b
t )) is efficient.

The following lemma presents properties of the function T that are essential for our
results.

Lemma 1 (Concavity of T , Ritschel & Wenzelburger, 2024).
Under the hypotheses of Assumption 1, the map T : D → R+ is concave. For each

2The well-known Stolper-Samuelson theorem states that the functions (2.12) are monotonic w.r.t.
ω, so that the inverse functions y−1

j (kt, ·) : [0, fj(kt)] →
[
Ωmin(kt),Ωmax(kt)

]
, j = g, b, are well defined,

satisfying y−1
j

(
kt, yj(kt, ωt)

)
= ωt. Formally, the invertibility along with the invertibility of the labour-

share functions is shown in Ritschel and Wenzelburger (2024).
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(kt, y
b
t ) ∈ D, its partial derivatives are

(i)
∂T

∂yb
(kt, y

b
t ) = −

f ′
g(κg(ωt))

f ′
b(κb(ωt))

and (ii)
∂T

∂k
(kt, y

b
t ) = f ′

g(κg(ωt)),

where

ωt = Ω(kt, y
b
t ) :=

{
y−1
b (kt, y

b
t ) if Ωg(kt) ̸= Ωb(kt)

Ωb(kt) if Ωg(kt) = Ωb(kt)
.

For any fixed kt > 0, the curve

T (kt, ·) :
[
0, fb(kt)

]
→

[
0, fg(kt)

]
, yb 7→ T (kt, y

b), (2.15)

defines the production-possibility frontier pertaining to the capital-labour ratio kt. The
total output per capita plus depreciated capital produced with the production plan
(ybt , T (kt, y

b
t )) is given by the function f : D → R+, defined by

f(kt, y
b
t ) := ybt + T (kt, y

b
t ) + (1− δ)kt. (2.16)

Lemma 1 implies that the function f is concave, but not necessarily strictly concave. In
particular, for any given capital-labour ratio kt > 0, the production-possibility frontier
(2.15) is concave.

Lemma 1 suggests to define the function ϱ : R+ → R+ by setting

ϱ(ω) :=
f ′
g(κg(ω))

f ′
b(κb(ω))

. (2.17)

The marginal rate of transformation corresponding to any production plan (ybt , T (kt, y
b
t ))

then is ϱ(Ω(kt, ybt )). Two observations, formally established in Ritschel and Wenzelburger
(2024), are important and portrayed in Figure 1. First, the concavity of T implies
that ϱ(Ωg(kt)) ≤ ϱ(Ωb(kt)) for all kt > 0, independently of the sector-specific capital
intensities. Second, the marginal rate of transformation is increasing in the wage-rental
ratio if and only if the green sector is more capital-intensive than the brown sector, i.e.,
ϱ′(ωt) ≥ 0 ⇐⇒ κg(ωt) ≥ κb(ωt).

2.3 Production externality

To produce one unit of the good, the brown sector emits ϵ > 0 pollution units into the
environment. The pollution stock per capita of the young generation at the beginning of
period t is denoted by et ≥ 0. The emissions per capita generated in period t are ϵ ybt .
The evolution of the per-capita pollution stock over time is then governed by a function
E : R2

+ → R+, defined by

et+1 = E(et, y
b
t ) :=

1
1+n

[
(1− ζ)et + ϵybt

]
, (2.18)
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yb

yg

ybt = yb(kt, ωt)

ygt = yg(kt, ωt)

fb(kt)

fg(kt)

Production-possibility set

%(Ωg(kt))slope

slope %(Ωb(kt))

slope %(ωt)

0

T (kt, ·)

Figure 1: Strictly concave production-possibility frontier; kt > 0 fixed with Ωg(kt) ̸= Ωb(kt).

where 0 < ζ ≤ 1 is the pollution decay rate. The pollution index in period t is

zt = (1− ζ)et + ϵybt = (1 + n)et+1. (2.19)

It follows from (2.18) that3

et+1 =
(
1−ζ
1+n

)t
e0 +

ϵ
1+n

t∑
j=0

(
1−ζ
1+n

)t−j
ybj . (2.20)

Therefore, unless pollution decays fully (i.e., ζ = 1), it diminishes the welfare of all
future generations. The production externality thus has both, intra- and intergenerational
effects. Observe, however, that our model abstracts from a direct effect of pollution on
production.

2.4 Preferences

Agents have preferences over consumption and the quality of the environment. The
preferences are represented by an additive-separable life-cycle utility function U : R4

+ →
R, defined by

U(c1t , c
2
t+1, zt, zt+1) := u(c1t )− µ(zt) + β

[
u(c2t+1)− µ(zt+1)

]
, (2.21)

where c1t , c2t+1 ≥ 0 denote youthful and old-age consumption, respectively, and zt ≥ 0 is
the environmental pollution index defined in (2.19). The factor β > 0 is the agent-specific
time-discount factor.

Our assumptions on the preferences are the following.

Assumption 2 (Preferences).

3Since the sequence {ybt}∞t=0 is bounded from above by some ybmax > 0 and 1−ζ
1+n ∈ [0, 1), the sequence

{et}∞t=0 is bounded from above by emax = ϵ
n+ζ y

b
max.
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(i) The utility function u : R+ → R is twice continuously differentiable, strictly increas-
ing, u′ > 0, strictly concave, u′′ < 0, and satisfies the Inada condition limc→0 u

′(c) =

∞.

(ii) The damage function µ : R+ → R+ is twice continuously differentiable, strictly
increasing, µ′ > 0, and convex, µ′′ ≥ 0.

Assumption 2 implies that youthful and old-age consumption are normal goods, whereas
environmental pollution is a bad. The total pollution damage incurred by an agent born
in period t over his whole lifetime is µ(zt) + βµ(zt+1).

3 Welfare Analysis

This section examines welfare aspects of the model by taking the perspective of a benev-
olent social planner who maximises the sum of the discounted welfare levels of all gen-
erations. In doing so, the planner takes the intergenerational effects of pollution into
account. In particular, he weighs the current generations’ utility of consumption against
the pollution damages inflicted on future generations.

3.1 Feasible allocations

For any given capital-labour ratio kt ≥ 0, the set of feasible policies (ybt , c
1
t , c

2
t ) is defined

by
Q(kt) :=

{
(yb, c1, c2) ∈ R3

+

∣∣ c1 + c2

1+n
≤ f(kt, y

b) and yb ≤ fb(kt)
}
. (3.1)

Since, by Lemma 1, the production function f is concave, each set Q(kt) is compact and
convex.

In each period t ≥ 0, the total output f(kt, ybt ) must equal total consumption and invest-
ments. In per-capita terms, this resource constraint translates into the capital accumu-
lation law A : D × R2

+ → R+, defined by

kt+1 = A(kt, y
b
t , c

1
t , c

2
t ) :=

1
1+n

[
f(kt, y

b
t )−

(
c1t +

c2t
1+n

)]
, (3.2)

where ct = c1t +
c2t

1+n
is total consumption per capita in period t. Using the accumulation

law E : R2
+ → R+ for the pollution stock defined in (2.18), a feasible allocation may now

formally be defined as follows.

Definition 1 (Feasible allocation).
Given the initial condition (k0, e0) ∈ R++ × R+, a feasible allocation is a sequence{
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

that satisfies{
kt+1 = A(kt, y

b
t , c

1
t , c

2
t )

et+1 = E(et, y
b
t )

(3.3)

with (ybt , c
1
t , c

2
t ) ∈ Q(kt) for all times t ≥ 0. The set of all feasible allocations, given
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(k0, e0), is

Π(k0, e0) :=
{{

(kt, et, y
b
t , c

1
t , c

2
t )
}∞
t=0

∣∣∣ ∀ t ≥ 0, (ybt , c
1
t , c

2
t ) ∈ Q(kt),

kt+1 = A(kt, y
b
t , c

1
t , c

2
t ), and et+1 = E(et, y

b
t )
}
.

Notice that our definition of a feasible allocation excludes factor allocations that are not
efficient. The reason is that a market economy as well as a benevolent social planner,
as introduced in the next section, will only implement efficient factor allocations. In
particular, if a production plan were inefficient, then the output in the non-polluting
sector could always be raised and welfare be increased without lowering the output in
the brown sector.

3.2 The social planner’s problem

We first formalize the social planner’s objective function. Taking a utilitarian measure,
the welfare of the generation born in period t ≥ 0 is U(c1t , c2t+1, zt, zt+1) as defined in (2.21)
and the welfare of the initial old generation is β[u(c20) − µ(z0)]. The planner’s objective
function, henceforth referred to as social welfare function, then takes the form

W
({

(kt, et, y
b
t , c

1
t , c

2
t )
}∞
t=0

)
:=

∞∑
t=0

γtg(kt, et, y
b
t , c

1
t , c

2
t ), (3.4)

where 0 < γ < 1 is the social discount factor and

g(kt, et, y
b
t , c

1
t , c

2
t ) := u(c1t ) +

β
γ
u(c2t )−

(
1 + β

γ

)
µ
(
(1− ζ)et + ϵybt

)
(3.5)

is the one-period return function. The social planner’s task is to select the feasible alloca-
tion

{
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

∈ Π(k0, e0) with the highest possible level of social welfare. In
each period t ≥ 0, the planner chooses a production plan (ybt , T (kt, y

b
t )) on the production-

possibility frontier, a consumption plan (c1t , c
2
t ), and an investment level kt+1. Given the

initial condition (k0, e0) ∈ R++ × R+, the planner’s problem is

max
{
W

({
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

) ∣∣∣ {(kt, et, ybt , c1t , c2t )}∞
t=0

∈ Π(k0, e0)
}
. (3.6)

A solution
{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

to Problem (3.6) will be referred to as an optimal
allocation.

To solve the planning problem using dynamic programming methods, a number of tech-
nical results found in De La Croix and Michel (2002) must be adapted. Proposition 1
ensures that Problem (3.6) is well posed.

Proposition 1 (Existence of the value function).
Let Assumptions 1 and 2 be satisfied. Then for each (k0, e0) ∈ R++ × R+, the value

10



function

V(k0, e0) := sup
{
W

({
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

) ∣∣∣ {(kt, et, ybt , c1t , c2t )}∞
t=0

∈ Π(k0, e0)
}

is well defined and finite.

All relevant properties of the value function V are summarised in Lemma 2.

Lemma 2 (Properties of the value function).
Let Assumptions 1 and 2 be satisfied. Then for each (k0, e0) ∈ R++ × R+, the value
function V : R++ × R+ → R satisfies the Bellman equation

V(k0, e0) = sup
{
g(k0, e0, y

b, c1, c2)+ γV
(
A(k0, y

b, c1, c2), E(e0, y
b)
) ∣∣∣ (yb, c1, c2) ∈ Q(k0)

}
.

Moreover, V is concave, continuous, and differentiable.

Using the Bellman equation, the existence of a unique optimal allocation and its charac-
terisation via first-order conditions are established in the following theorem.

Theorem 1 (Existence and uniqueness of the optimal allocation).
Let Assumptions 1 and 2 be satisfied. Then the following holds true.

(i) For any given initial condition (k0, e0) ∈ R++ × R+, there exists a uniquely de-
termined optimal allocation

{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

∈ Π(k0, e0) that attains the
welfare maximum,

V(k0, e0) = W
({

(k∗t , e
∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

)
,

where (k∗0, e
∗
0) = (k0, e0). This optimal allocation is generated by continuous policy

functions yb∗ : R++ × R+ → R+ and c1∗, c2∗ : R++ × R+ → R++ in the sense that for
each t ≥ 0,

k∗t+1 = A(k∗t , y
b∗
t , c

1∗
t , c

2∗
t ) > 0

e∗t+1 = E(e∗t , y
b∗
t )

(yb∗t , c
1∗
t , c

2∗
t ) =

(
yb∗(k

∗
t , e

∗
t ), c

1
∗(k

∗
t , e

∗
t ), c

2
∗(k

∗
t , e

∗
t )
)
∈ Q(k∗t ).

(ii) For each t ≥ 0, the optimal allocation
{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

satisfies the first-
order conditions

u′(c1∗t )

βu′(c2∗t )
= 1+n

γ
(3.7)

u′(c1∗t )

βu′(c2∗t+1)
=
∂f

∂k
(k∗t+1, y

b∗
t+1) + λ2t+1f

′
b(k

∗
t+1) (3.8)

u′(c1∗t )
[ ∂f
∂yb

(k∗t , y
b∗
t ) + λ1t − λ2t

]
= ϵ(1 + β

γ
)

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′((1 + n)e∗j+1

)
(3.9)
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together with the complementary slackness conditions

λ1ty
b∗
t = 0 and λ2t

[
fb(k

∗
t )− yb∗t

]
= 0, λ1t , λ

2
t ≥ 0. (3.10)

While closed-form solutions for the policy functions are generally unavailable, the first-
order conditions (3.7) – (3.9) have a clear economic intuition. Equation (3.7) is the stan-
dard condition for OLG models that determines the optimal allocation of consumption
between two coexisting generations. Equation (3.8) specifies the agent’s marginal rate of
intertemporal substitution. Thus, it determines the optimal allocation of consumption
within an individual’s lifetime.

Equation (3.9) will be of central importance for analysing the optimal taxation of emis-
sions. It equates the marginal utility of producing an additional unit of brown output
in period t with the sum of the discounted marginal damages incurred by all generations
living from period t onward.4 The factor (1 + β

γ
) accounts for the fact that at any point

in time, pollution affects the welfare of the young and the old generation. The Lagrange
multipliers λ1t , λ2t are needed because the optimal allocation may include boundary factor
allocations. The complementary slackness conditions (3.10) imply that these are zero
whenever both sectors are producing.

Two special cases in which the first-order condition (3.9) allows for a more tractable
characterisation of the policy function yb∗ are presented in the following corollary.

Corollary 1.
For each (kt, et) ∈ R++ × R+, the optimal policy yb∗t = yb∗(kt, et) satisfies the following
properties.

(i) If ζ = 1, then

yb∗t =



0 if ϱ(Ωg(kt)) ≥ 1− ϵ
(
1 + β

γ

) µ′(0)

u′(c1∗(kt, et))

fb(kt) if ϱ(Ωb(kt)) ≤ 1− ϵ
(
1 + β

γ

) µ′(ϵfb(kt))

u′(c1∗(kt, et))

solves ϱ(Ω(kt, y
b∗
t )) = 1− ϵ

(
1 + β

γ

) µ′(ϵyb∗t )

u′(c1∗(kt, et))
otherwise

.

(ii) If µ′ ≡ 0, then

yb∗t = argmax
0≤yb≤fb(kt)

f(kt, y
b) =


0 if ϱ(Ωg(kt)) ≥ 1

fb(kt) if ϱ(Ωb(kt)) ≤ 1

solves ϱ(Ω(kt, yb∗t )) = 1 otherwise

.

4First-order conditions of the form (3.9) are often encountered in the literature on intergenerational
pollution externalities, e.g., see Equation (22) in Jaimes (2023).
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Corollary 1 (i) characterises the optimal production plan (yb∗t , T (k
∗
t , y

b∗
t )) if the pollution

stock decays fully between any two periods, so that only the instantaneous emissions ϵ yb∗t
affect the welfare of the two generations in period t. The optimal level of brown output
yb∗t then depends on how the marginal rate of transformation relates to the marginal
rate of substitution between consumption and pollution. Corollary 1 (ii) states that in a
model without externalities, the optimal production plan (yb∗t , T (k

∗
t , y

b∗
t )) maximises the

total output of the economy, given the capital-labour ratio k∗t .

3.3 Modified golden-rule steady states

A stationary feasible allocation is a constant sequence
{
(k̄, ē, ȳb, c̄1, c̄2)

}
that is feasible

in the sense of Definition 1. The second equation in (3.3) implies that the stationary
pollution stock per capita ē satisfies ē = E(ē, ȳb). On the other hand, it follows from the
first equation in (3.3) that for any (k̄, ȳb) ∈ D, stationary total consumption per capita
c̄ = c̄1 + c̄2

1+n
is stipulated by the function

c̄ = ϕ(k̄, ȳb) := f(k̄, ȳb)− (1 + n)k̄. (3.11)

By Theorem 1, the dynamics induced by the social planner’s optimal policy is governed
by the dynamical system{

kt+1 = A
(
kt, y

b
∗(kt, et), c

1
∗(kt, et), c

2
∗(kt, et)

)
et+1 = E

(
et, y

b
∗(kt, et)

) . (3.12)

A steady state of the system (3.12), which will be referred to as a modified golden-
rule steady state, is a stationary feasible allocation

{
(k̄γ, ēγ, ȳ

b
γ, c̄

1
γ, c̄

2
γ)
}

with (ȳbγ, c̄
1
γ, c̄

2
γ) ∈

Q(k̄γ) that satisfies

k̄γ = A(k̄γ, ȳ
b
γ, c̄

1
γ, c̄

2
γ)

ēγ = E(ēγ, ȳ
b
γ).

(3.13)

Using the function ϕ defined in (3.11), the steady-state conditions in (3.13) take the more
convenient form

c̄1γ +
c̄2γ
1+n

= ϕ(k̄γ, ȳ
b
γ) (3.14)

ēγ = ϵ
n+ζ

ybγ. (3.15)

The social planner’s first-order condition (3.7) implies that the marginal rate of intertem-
poral substitution in a steady state fulfils

u′(c̄1γ)

βu′(c̄2γ)
= 1+n

γ
. (3.16)
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Thus, given any pair (k̄γ, ȳ
b
γ) ∈ D with ϕ(k̄γ, ȳbγ) > 0, the steady-state consumption plan

c̄1γ = c̄1(k̄γ, ȳ
b
γ) and c̄2γ = c̄2(k̄γ, ȳ

b
γ)

is uniquely determined by the budget constraint (3.14) and the first-order condition (3.16).
As a consequence, the modified golden-rule steady state is determined by the pair (k̄γ, ȳbγ).

The central question now is how (k̄γ, ȳ
b
γ) must be chosen such that the social welfare is

maximal. Using (3.9), we may define the function ψ : D → R+ by setting

ψ(k, yb) :=
ϵ
(
1 + β

γ

)
1− γ(1−ζ)

1+n

µ′( (1+n)ϵ
n+ζ

yb
)

u′
(
c̄1(k, yb)

) , (3.17)

which contains a marginal rate of substitution that describes the trade-off between the
steady-state consumption of the two generations and the steady-state pollution level. For
each sector j = g, b, we introduce the capital-labour ratio k̄j > 0, defined by

f ′
j(k̄

j) = 1+n
γ

− 1 + δ,

and the corresponding wage-rental ratio ω̄j = Ωj(k̄
j). We are now in a position to state

one of this article’s main results.

Theorem 2 (Modified golden-rule steady states).
Under the hypotheses of Assumptions 1 and 2, there exists at least one modified golden-
rule steady state (k̄γ, ȳ

b
γ). These steady states are characterised as follows.

(i) If 1− ψ(κg(ω̄
g), 0) ≤ ϱ(ω̄g), then (k̄γ, ȳ

b
γ) = (k̄g, 0) is a steady state.

(ii) If either
1− ψ(κg(ω̄

g), 0) < ϱ(ω̄g) < 1− ψ
(
κb(ω̄

g), fb(κb(ω̄
g))

)
(3.18)

or
1− ψ(κg(ω̄

g), 0) > ϱ(ω̄g) > 1− ψ
(
κb(ω̄

g), fb(κb(ω̄
g))

)
, (3.19)

then there exists k̄γ ∈
(
min{κg(ω̄g), κb(ω̄

g)},max{κg(ω̄g), κb(ω̄
g)}

)
determined by

ϱ(ω̄g) = 1− ψ
(
k̄γ, yb(k̄γ, ω̄

g)
)

(3.20)

and ȳbγ = yb(k̄γ, ω̄
g) such that (k̄γ, ȳbγ) is a steady state.

(iii) If ϱ(ω̄g) ≤ 1−ψ
(
κb(ω̄

g), fb(κb(ω̄
g))

)
, then there exists k̄γ ∈

[
κb(ω̄

g), k̄b
)

determined
by

f ′
b(k̄γ)

[
1− ψ(k̄γ, fb(k̄γ))

]
= 1+n

γ
− 1 + δ

and ȳbγ = fb(k̄γ) such that (k̄γ, ȳbγ) is a steady state.

The three distinct types of steady states in Theorem 2 are referred to as green, mixed,
and brown, respectively. For the intuition of theorem, the following corollary is insightful.
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Corollary 2.
If µ′ ≡ 0, then there exists a modified golden-rule steady state, determined by

(k̄γ, ȳ
b
γ) =

{
(k̄g, 0) if ϱ(ω̄g) ≥ 1(
k̄b, fb(k̄

b)
)

if ϱ(ω̄g) ≤ 1
, (3.21)

where f ′
g(k̄

g) = f ′
b(k̄

b) = 1+n
γ

− 1 + δ. If, in addition, γ = 1, then ϕ attains its maximum
in (k̄γ, ȳ

b
γ) and the consumption levels are ϕ(k̄g, 0) = wg(k̄

g) and ϕ(k̄b, fb(k̄
b)) = wb(k̄

b),
respectively.

Corollary 2 reveals that if pollution plays no role, then the modified golden-rule steady
state permits only the more productive sector to produce the good.5 In the presence of
pollution, however, the type of the steady state does not only depend the sectors’ relative
productivity, but also on the emission intensity ϵ, the compound discount factor γ(1−ζ)

1+n
,

and agents’ preferences, especially their valuation of the externality. The resulting trade-
off is described by the relationship between the marginal rate of transformation ϱ and
the marginal rate of substitution ψ. In the long-run, complete decarbonisation is optimal
if and only if 1 − ψ(k̄g, 0) ≤ ϱ(ω̄g). Since ψ ≥ 0, a unique green steady state exists if
ϱ(ω̄g) ≥ 1, in which case the green technology is at least as productive as the polluting
technology. If ϱ(ω̄g) < 1 − ψ(k̄g, 0), then it is optimal to let brown firms produce, as
the consumption benefits outweigh the pollution damages. The exact extent, however,
depends on the severity of the externality.

The intuition of Theorem 2 is linked to the well-known Rybczynski-Theorem. In Ritschel
and Wenzelburger (2024), we show that all efficient production plans with the same
marginal rate of transformation ϱ(ω̄g) are located on a straight line

yg = fg(κg(ω̄
g))− fg(κg(ω̄

g))

fb(κb(ω̄g))
yb, yb ∈

[
0, fb(κb(ω̄

g))
]
,

in the (yb, yg)-plane. With this line, we may associate a family of production-possibility
frontiers corresponding to the capital-labour ratios

k̄ ∈
(
min{κg(ω̄g), κb(ω̄

g)},max{κg(ω̄g), κb(ω̄
g)}

)
. (3.22)

If the interval (3.22) contains a capital-labour ratio k̄γ such that

ϱ(ω̄g) = 1− ψ
(
k̄γ, yb(k̄γ, ω̄

g)
)
,

then this capital-labour ratio balances the trade-off between consumption and pollution
and, thus, defines the mixed steady state. If such a capital-labour ratio does not exist,
then a mixed steady state does not exist. Instead, a green or a brown boundary steady

5Observe that ϱ(ω̄g) ≥ 1 ⇐⇒ wg(k̄
g) ≥ wb(k̄

b), so that the stationary wage income determines
which sector is active. The case γ = 1 corresponds to the modified golden rule, i.e., the question of which
stationary feasible allocation has the highest level of welfare.
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state is obtained.

Importantly, observe that mixed steady states may exist either due to (3.18) or due to
(3.19). In the former case, it follows directly from Theorem 2 that a green, a brown, and
a mixed steady state coexist.6 Which of these steady states is attained depends on their
stability properties and the initial conditions of the economy.

The following example adopts standard preferences and technologies from the literature.

Example 1 (Logarithmic utility and Cobb-Douglas technology).
Consider the logarithmic utility function u(c) = ln(c), the damage function µ(z) = dzσ,
where d > 0 and σ ≥ 1, and the Cobb-Douglas production functions

fg(k) = Agk
αg and fb(k) = Abk

αb ,

where Ag, Ab > 0 scale total factor productivity and 0 < αg, αb < 1 determine the income
distribution. In this case, the function ϱ becomes

ϱ(ω) =

(
ααb
b (1− αb)

1−αbAb

α
αg
g (1− αg)1−αgAg

)
ωαb−αg . (3.23)

It follows from (3.14) and (3.16) that the steady-state consumption plan satisfies

c̄1(k, yb) =
ϕ(k, yb)

1 + β
γ

and c̄2(k, yb) = (1 + n)
ϕ(k, yb)

1 + γ
β

,

so that the function ψ takes the form

ψ(k, yb) =
ϵdσ

[ (1+n)ϵ
n+ζ

yb
]σ−1

1− γ(1−ζ)
1+n

ϕ(k, yb).

A green steady state is characterised by

k̄g =
( Agαg

1+n
γ

− 1 + δ

) 1
1−αg and ω̄g = Ωg(k̄

g) = 1−αg

αg
k̄g.

The capital-labour ratio in a brown steady state is determined by

Abαb(k̄γ)
αb−1

[
1−

ϵdσ
[ (1+n)ϵ

n+ζ
Ab(k̄γ)

αb
]σ−1

1− γ(1−ζ)
1+n

[
Ab(k̄γ)

αb − (n+ δ)k̄γ
]]

= 1+n
γ

− 1 + δ.

For parameter set A, see Table 1, we have ω̄g = 0.456. In this case, all three types of
steady states coexist. The capital-labour ratio in the green steady is 1.617, in the brown
steady state 0.489, and in the mixed steady state 1.419. For parameter set B, we have
ω̄g = 1.103. There exists a uniquely determined mixed steady state, characterised by the
capital-labour ratio 1.035.

6If µ′(0) = 0, then ψ(k̄g, 0) = 0 such that different types of steady states cannot coexist.
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Parameter Set A Set B

ϵ 1 1
ζ 0.9 0.9
σ 1 1
d 0.04 0.04
γ 0.5 0.5
β 1 1
n 0 0
δ 1 1

Ab 3 5
Ag 2.85 4.2
αb 0.5 0.5
αg 0.78 0.45

Table 1: Parameter sets for Example 1.

4 Implementation of Optimal Allocations

This section examines how fiscal policy can implement the social planner’s optimal allo-
cation in a competitive market economy.

4.1 Temporary equilibria

In a temporary equilibrium, all markets clear simultaneously and, given expectations,
individual decisions are optimal. Since the sectors’ outputs are perfect substitutes, Wal-
ras’ law implies that the goods market must clear if the factor allocation is efficient.
Recall that capital and labour are perfectly mobile between the sectors and are paid
their marginal products (2.4). Hence, given any capital-labour ratio kt, the equilibrium
wage-rental ratio ωt corresponding to an equilibrium production plan (ybt , T (kt, y

b
t )) with

0 < ybt < fb(kt), i.e. with positive output in both sectors, must satisfy the first-order
condition

ϱ(ωt)
!
=
pbt
pgt
, (4.1)

where pjt , j = g, b, are the sector-specific output prices in (2.4).

Suppose now that the government levies a tax rate ηt per unit of emissions in period
t, which is stipulated by an emissions-tax-policy rule η : R++ × R+ → R such that
ηt = η(kt, et).7 Normalising the price of the ‘green’ output, we may set pgt = 1 and
pbt = 1− ϵηt so that the output-price ratio becomes pbt

pgt
= 1− ϵηt. We can now characterise

the wage-rental ratio in a temporary equilibrium.

Proposition 2 (Existence and uniqueness of temporary equilibria).
Let Assumptions 1 and 2 be satisfied. Then for any state (kt, et) ∈ R++ × R+ with

7Our approach also allows for the case ηt < 0, in which the brown sector is subsidised.
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emissions tax rate ηt = η(kt, et) ∈ R, the equilibrium wage-rental ratio is

ωt = Ωeq(kt, ηt) :=


Ωg(kt) if ϱ(Ωg(kt)) ≥ 1− ϵηt

Ωb(kt) if ϱ(Ωb(kt)) ≤ 1− ϵηt

ϱ−1(1− ϵηt) otherwise

.

Setting ωt = Ωeq(kt, η(kt, et)), the equilibrium wage rate is

wt = w(kt, et) := max
{
wg(κg(ωt)),

[
1− ϵη(kt, et)

]
wb(κb(ωt))

}
, (4.2)

the equilibrium gross return on capital is

Rt = R(kt, et) := 1− δ +max
{
f ′
g(κg(ωt)),

[
1− ϵη(kt, et)

]
f ′
b(κb(ωt))

}
, (4.3)

and the equilibrium production plan (ybt , T (kt, y
b
t )) is determined by

ybt = ybeq(kt, et) :=


yb(kt, ωt) if Ωb(kt) ̸= Ωg(kt)

fb(kt) if ϱ(Ωb(kt)) = ϱ(Ωg(kt)) < 1− ϵη(kt, et)

0 if ϱ(Ωb(kt)) = ϱ(Ωg(kt)) ≥ 1− ϵη(kt, et)

. (4.4)

By Proposition 2, the emissions tax rate ηt stipulates a uniquely determined equilib-
rium wage-rental ratio ωt and thus the production plan (ybt , T (kt, y

b
t )). The boundary

production plans in which only one sector is producing obtain for sufficiently high and
sufficiently low tax rates.

4.2 Fiscal policy

Proposition 2 implies that the sum of factor incomes in a temporary equilibrium is

w(kt, et) +R(kt, et)kt = f(kt, y
b
t )− ηtϵy

b
t , (4.5)

where ηtϵybt are the government’s emissions tax receipts in period t. These reduce the
incomes of both generations. Assume for simplicity that the government does not hold
or issue bonds and suppose that in addition to the emissions tax, it levies a proportional
tax τt = τ(kt, et) on the wage income of young agents, which is stipulated by an income-
tax-policy rule τ : R++ × R+ → R. If the government pays each old agent a lump-sum
transfer dt ∈ R, then its budget constraint takes the form

dt
1+n

= ηtϵy
b
t + τtwt. (4.6)

Given a pair of tax-policy rules η, τ , the disposable income of a young agent in period t

if the state of the economy is (kt, et) is

wd
t = wd(kt, et) :=

[
1− τ(kt, et)

]
w(kt, et),
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and the disposable income of an old agent amounts to

πt = π(kt, et) := (1 + n)R(kt, et)kt + d(kt, et),

where the lump-sum transfer to an old agent is

dt = d(kt, et) := (1 + n)
[
η(kt, et)ϵ y

b
eq(kt, et) + τ(kt, et)w(kt, et)

]
.

A fiscal policy is feasible if the disposable income of both generations is non-negative, i.e.
wd

t ≥ 0 and πt ≥ 0. The former holds whenever τt ≤ 1; the latter holds if and only if

τt ≥ τ(kt, η(kt, et)) := −
R(kt, et)kt + ϵ η(kt, et)y

b
eq(kt, et)

w(kt, et)
.

More formally, a feasible fiscal policy may be defined as follows.

Definition 2 (Feasible fiscal policy).
A feasible fiscal policy is a pair of tax-policy rules η, τ : R++ × R+ → R that satisfies
τ(k, η(k, e)) ≤ τ(k, e) ≤ 1 for all (k, e) ∈ R++ × R+.

We will assume for the remainder of this article that the government’s fiscal policy is
feasible.8 Since Definition 2 allows for τt < 0 and dt < 0, the government may compensate
the reduction in factor incomes by redistributing the emissions tax receipts in full to young
and old agents. In particular, if τt = τ(kt, ηt), then πt = 0 and wd

t = f(kt, y
b
t ) > wt. On

the other hand, if τt = 1, then πt = (1 + n)f(kt, y
b
t ) and wd

t = 0.

4.3 Capital accumulation

The savings decision problem of a typical young agent is the following. In each period
t, the agent forms an expectation Re

t > 0 with respect to the gross return on savings
Rt+1 realised in t + 1, and an expectation det ∈ R with respect to the transfer payment
dt+1. Given the disposable income wd

t and the expectations (Re
t , d

e
t ), the savings decision

problem takes the form9

max
s

u(wd
t − s)− µ(zt) + β

[
u(Re

ts+ det )− µ(zt+1)
]

s.t. max
{−det

Re
t
, 0
}
≤ s ≤ wd

t .
(4.7)

The two constraints in (4.7) ensure that savings, youthful consumption, and anticipated
old-age consumption are non-negative. Given that the agent’s anticipated lifetime income
is non-negative, wd

t +
det
Re

t
≥ 0, then Problem (4.7) admits a uniquely determined solution

st = s(wd
t , d

e
t , R

e
t ).10 An interior solution s(wd

t , d
e
t , R

e
t ) > 0 obtains from the first-order

8Since τ(kt, ηt) ≤ 0 whenever ηt ≥ 0, any fiscal policy defined by tax-policy rules of the form
η : R++ × R+ → R+ and τ : R++ × R+ → [0, 1] is feasible.

9Since each individual agent has mass zero, the agent does not take into account how his savings
behaviour affects the pollution indices zt and zt+1.

10In the extreme case wd
t +

de
t

Re
t
= 0, savings are st = wd

t = − de
t

Re
t
.
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condition
u′(wd

t − st)

βu′(Re
tst + det )

= Re
t . (4.8)

The capital-labour ratio of the subsequent period t+ 1 is then given by

kt+1 =
1

1+n
s(wd

t , d
e
t , R

e
t ).

Note that kt+1 is only well defined for forecasts (Re
t , d

e
t ) satisfying wd

t +
det
Re

t
≥ 0.

4.4 Perfect-foresight dynamics

The expectations formation is considered next. In period t+ 1, the realised gross return
on savings is Rt+1 = R(kt+1, et+1), and the realised transfer payment to an old agent is
dt+1 = d(kt+1, et+1), where

et+1 = Eeq(kt, et) := E(et, y
b
eq(kt, et))

governs the accumulation of emissions. If ket is the forecast for kt+1, the forecasts (Re
t , d

e
t )

that are consistent with ket obtain by setting

Re
t = R(ket , Eeq(kt, et)) and det = d(ket , Eeq(kt, et)).

Observe that these forecasts are correct whenever ket correctly predicts kt+1. Our next
lemma ensures that the decision problem of a young agent is well posed.

Lemma 3 (Anticipated lifetime income).
Let Assumptions 1 and 2 be satisfied and the fiscal policy be feasible. Then for any state
(kt, et) ∈ R++×R+ and each forecast 0 ≤ ket ≤ 1

1+n
wd(kt, et), a young agent’s anticipated

lifetime income is positive, that is,

wd(kt, et) +
d(ket , Eeq(kt, et))

R(ket , Eeq(kt, et))
≥ 0. (4.9)

Since the agent’s anticipated lifetime income is positive under the assumptions of Lemma
3, the savings function is well defined. Observe that a forecast ket >

1
1+n

wd
t can never be

a self-fulfilling prophecy because savings cannot exceed the disposable income.

Given (kt, et), the forecast ket is correct, i.e. ket = kt+1, if it solves

ket =
1

1+n
s
(
wd(kt, et), d(k

e
t , Eeq(kt, et)), R(k

e
t , Eeq(kt, et))

)
.

A perfect forecasting rule in the sense of Böhm and Wenzelburger (1999) may now be
defined as follows.

Definition 3 (Perfect forecasting rule).
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A forecasting rule G : R++ × R+ → R+ that satisfies

G(k, e) = 1
1+n

s
(
wd(k, e), d(G(k, e), e1), R(G(k, e), e1)

)
, where e1 = Eeq(k, e),

for all (k, e) ∈ R++ × R+ is called a perfect forecasting rule.

The existence of a perfect forecasting rule is established next.11

Proposition 3 (Existence of perfect forecasting rules).
Under the hypotheses of Assumptions 1 and 2, there exists a perfect forecasting rule G
in the sense of Definition 3. If, in addition, Re 7→ s(wd, de, Re) and k 7→ d(k, e) are
non-decreasing, then G is uniquely determined.

Given the initial condition (k0, e0) ∈ R++ × R+, all growth paths {(kt, et)}∞t=0 under
perfect foresight are generated recursively by the perfect forecasting rule G together with
the map Eeq, so that {

kt+1 = G(kt, et)

et+1 = Eeq(kt, et)
. (4.10)

With each growth path {(kt, et)}∞t=0 generated by the dynamical system (4.10), we may as-
sociate a perfect-foresight allocation, which is the feasible allocation

{
(kt, et, y

b
t , c

1
t , c

2
t )
}
∈

Π(k0, e0) such that for each t ≥ 0,

kt+1 = G(kt, et)

et+1 = Eeq(kt, et)

ybt = ybeq(kt, et)

c1t = wd(kt, et)− (1 + n)G(kt, et)

c2t = π(kt, et).

Given a pair of tax-policy rules η, τ , a perfect-foresight steady state (k⋆, e⋆) of the dynam-
ical system (4.10) is determined by

k⋆ =
1

1+n
s
(
wd(k⋆, e⋆), d(k⋆, e⋆), R(k⋆, e⋆)

)
(4.11)

e⋆ = Eeq(k⋆, e⋆). (4.12)

4.5 Optimal fiscal policies

Having established the perfect-foresight dynamics, we are now in a position to present
another main result of this article.

Theorem 3 (Implementation of the optimal allocation).
Let Assumptions 1 and 2 be satisfied. Then for any given initial condition (k0, e0) ∈

11As is well known, Re 7→ s(wd, de, Re) is non-decreasing if youthful and old-age consumption are
weak gross substitutes.
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R++ × R+ and corresponding optimal allocation
{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

∈ Π(k0, e0),
there exists a uniquely determined series of optimal tax rates {(η∗t , τ ∗t )}∞t=0 such that{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

is a perfect-foresight allocation. The series {(η∗t , τ ∗t )}∞t=0 is gen-
erated by a feasible fiscal policy η∗, τ∗ : R++ × R+ → R such that for each t ≥ 0,
η∗t = η∗(k

∗
t , e

∗
t ) and τ ∗t = τ∗(k

∗
t , e

∗
t ). The optimal emissions tax rate satisfies

η∗t =
1 + β

γ

u′(c1∗t )

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′(z∗j ). (4.13)

Theorem 3 establishes the existence of a feasible fiscal policy in the sense of Definition
2 that decentralises the optimal allocation in a market economy with perfect foresight.
This fiscal policy has the following properties.

The optimal emissions tax rate η∗t implements the welfare-maximising production plan
(yb∗t , T (k

∗
t , y

b∗
t )) by implementing the optimal wage-rental ratio ω∗

t = Ω(k∗t , y
b∗
t ), where

the function Ω is given in Lemma 1. It follows that the optimal emissions-tax-policy rule
η∗ : R++ × R+ → R is implicitly defined by

Ωeq(k, η∗(k, e)) = Ω(k, yb∗(k, e)). (4.14)

Equation (4.13) states that in each period t ≥ 0, η∗t is equal to the sum of the discounted
marginal damages incurred by all future generations.

Given the optimal emissions tax rate η∗t , the optimal income tax rate τ ∗t induces inter-
generational transfers such that under perfect foresight, a young agent decides at his
own discretion to save the amount of funds required to attain the capital-labour ra-
tio k∗t+1. Thus, given the functions η∗, G, and Eeq, the optimal income-tax-policy rule
τ∗ : R++ × R+ → R is implicitly defined by

A
(
k, c1∗(k, e), c

2
∗(k, e), y

b
∗(k, e)

)
= 1

1+n
s
(
[1− τ∗(k, e)]w(k, e), d

(
G(k, e), Eeq(k, e)

)
, R

(
G(k, e), Eeq(k, e)

))
.

A direct implication of Theorem 3 is that the government can implement a modified
golden-rule steady state

{
(k̄γ, ēγ, ȳ

b
γ, c̄

1
γ, c̄

2
γ)
}

as a perfect-foresight steady state. This
result is formalised in the following corollary.

Corollary 3.
Let (k̄γ, ēγ) with ēγ = ϵ

n+ζ
ȳbγ be a modified golden-rule steady state. Then the emissions

tax rate η̄γ = η∗(k̄γ, ēγ) is

η̄γ =
ψ(k̄γ, ȳ

b
γ)

ϵ
, (4.15)

and the income tax rate τ̄γ = τ∗(k̄γ, ēγ) ∈
(
τ(k̄γ, η̄γ), 1

)
is uniquely determined by

k̄γ = 1
1+n

s
(
(1− τ̄γ)w̄γ, d̄γ, R̄γ

)
, (4.16)
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where

w̄γ = w(k̄γ, ēγ), R̄γ = R(k̄γ, ēγ) =
1+n
γ
, and d̄γ = (1 + n)

[
η̄γϵȳ

b
γ + τ̄γw̄γ

]
.

In the proof of Corollary 3, we show that the government can not only implement the
modified golden-rule steady state (k̄γ, ēγ), but that it can achieve any desired steady state
(k̄, ē) ∈ R++ × R+ with (1 + n)k̄ < f(k̄, ȳb), ē = ϵ

n+ζ
ȳb, and 0 ≤ ȳb ≤ fb(k̄). However,

the implementation of certain (non-welfare-maximising) steady states may necessitate
subsidies for the polluting sector.

Equation (4.15) reveals that the optimal steady-state emissions tax rate η̄γ takes into
account the trade-off between stationary consumption and pollution, which is captured
by the marginal rate of substitution ψ. The optimal steady-state income tax rate τ̄γ
implements transfers such that savings are (1 + n)k̄γ.

Example 2 (Logarithmic utility and Cobb-Douglas technology).
Following on from Example 1, consider a quadratic damage function, i.e. σ = 2. Let δ = 1

so that capital depreciates fully. Since ψ(k̄g, 0) = 0, the modified golden-rule steady state
is green and determined by (k̄γ, ȳ

b
γ) = (k̄g, 0) if ϱ(ω̄g) ≥ 1. The corresponding steady-state

tax rates are

η̄γ =
ψ(k̄g, 0)

ϵ
= 0 and τ̄γ =

1− γ αg

1−αg

1+β
β

1 + γ
β

. (4.17)

Observe that
τ(k̄γ, η̄γ) = τ(k̄g, 0) = αg

αg−1
< τ̄γ < 1,

showing that the fiscal policy (4.17) is feasible. Wage income is taxed if

τ̄γ ≥ 0 ⇐⇒ γ ≤ β
1+β

1−αg

αg
(4.18)

and subsidised otherwise. Condition (4.18) may hold either due to a high savings propen-
sity or due to labour-intensive production in the green sector.

A surprising result obtains for mixed modified golden-rule steady states. Since, by (3.20),
the marginal rate of transformation satisfies 1− ϱ(ω̄g) = ψ(k̄γ, ȳ

b
γ), it follows from (4.15)

that
η̄γ =

1− ϱ(ω̄g)

ϵ
. (4.19)

Thus, η̄γ depends solely on the technologies and the brown sector’s emissions intensity ϵ.
In particular, it is decreasing in ϵ.

In the case of a linear damage function µ(z) = dz with slope d > 0, we may characterise
the sequence {η∗t }∞t=0 near a mixed modified golden-rule steady state by means of a simple
difference equation.

Proposition 4 (Constant marginal damage).
Let Assumptions 1 and 2 be satisfied and assume that the marginal damage of pollution

23



is a constant d > 0. Then, in a neighbourhood of a mixed modified golden-rule steady
state, the series {η∗t }∞t=0 satisfies the difference equation

η∗t+1

η∗t
= γ

1+n

[
1− δ + f ′

g

(
κg(ϱ

−1(1− ϵη∗t+1))
)]
, (4.20)

where (4.19) is the unique steady-state emissions tax rate.

5 Conclusion

This article develops a two-sector OLG model of sustainable growth by incorporating
a polluting production sector and environmental preferences into the classical Diamond
(1965) framework. The resulting model is analytically tractable, accommodates capital-
intensity reversals, and provides a framework for studying the role of fiscal policy for
the decarbonisation of an economy. Our welfare analysis highlights that the optimal ex-
tent of pollution reduction depends on the technologies, discounting, and agents’ subjec-
tive valuation of the externality. The welfare-maximising allocation, including modified
golden-rule steady states, can be decentralised using an emissions tax and intergenera-
tional transfers. The emissions tax, which is equal to the sum of the discounted marginal
future damages, implements the optimal pollution levels. In a modified golden-rule steady
state, it accounts for the trade-off between steady-state consumption and pollution. The
receipts from the emissions tax are distributed to agents to compensate them for the
policy-induced reduction in factor incomes. The intergenerational transfers enable the
government to choose the allocation of the compensation payments and, at the same
time, implement efficient capital accumulation.

The possible coexistence of multiple modified golden-rule steady states suggests that
the model may exhibit complex dynamics. An analysis of the steady states’ stability
properties and the qualitative dynamics arising from optimal allocations is outside the
scope of this article. In view of implementing optimal allocations, the stability question
should be addressed in future research. Another interesting avenue for future research
would be to incorporate income and wealth inequality into the model and explore how the
compensation payments can be allocated in a socially just manner. Limitations stem from
the assumption that agents’ consumption and environmental preferences are additive-
separable, as the utility of consumption may well depend on the state of the environment.
Addressing this interdependence by adopting a more general class of preferences could
yield valuable insights.
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A Appendix

Proof of Lemma 1. The proof is given in Ritschel and Wenzelburger (2024).

Proof of Proposition 1. Let (k0, e0) ∈ R++ × R+ be arbitrary but fixed.

Step 1 (Upper bound). We show that for each feasible allocation
{
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

∈
Π(k0, e0), the social welfare W

({
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

)
is bounded from above. Observe

that for each k ≥ 0 and each (yb, c1, c2) ∈ Q(k), we have

A(k, yb, c1, c2) ≤ 1
1+n

[
(1− δ)k + fb(k) + fg(k)

]
. (A.1)

It follows from (A.1) and Assumption 1 that every sequence {kt}∞t=0 starting from some
(k0, e0) ∈ R++×R+ that is generated recursively by the first equation in (3.3) is bounded.
The sequence {et}∞t=0 associated with {kt}∞t=0 generated by the second equation in (3.3)
is also bounded. Therefore, we can conclude that the sequence

{
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

is
bounded, implying that the one-period return function is bounded from above,

g(kt, et, y
b
t , c

1
t , c

2
t ) <∞ for all t ≥ 0.

Since γ ∈ (0, 1), the infinite sum of the discounted welfare levels converges, so that

W
({

(kt, et, y
b
t , c

1
t , c

2
t )
}∞
t=0

)
<∞.

Hence, the social welfare is bounded from above.

Step 2 (Lower bound). The existence of a feasible allocation
{
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

∈
Π(k0, e0) for which the social welfare attains a value larger than −∞ is established. For
each t ≥ 0, choose

ybt = 0 and c1t =
c2t

1+n
= 1

2

[
fg(kt)− (n+ δ)kt

]
.

For this choice, only the green sector produces so that

kt+1 = A(kt, 0, c
1
t , c

2
t ) =

1
1+n

[
fg(kt) + (1− δ)kt − c1t −

c2t
1+n

]
= kt

et+1 = E(et, 0) =
1−ζ
1+n

et

for all times t ≥ 0. Clearly, the social welfare W
({

(k0, et, 0, c
1
0, c

2
0)
}∞
t=0

)
of the resulting

feasible allocation
{
(k0, et, 0, c

1
0, c

2
0)
}∞
t=0

∈ Π(k0, e0) is finite.

Step 3 (Value function). Step 1 and Step 2 combined imply that the supremum

sup
{
W

({
(kt, et, y

b
t , c

1
t , c

2
t )
}∞
t=0

) ∣∣∣ {(kt, et, ybt , c1t , c2t )}∞
t=0

∈ Π(k0, e0)
}

exists and is finite. If the supremum exists, then it is unique. Since (k0, e0) ∈ R++ ×R+

were arbitrary, the value function V is well defined on R++ × R+.
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Proof of Lemma 2. Step 1 (Bellman equation). Let (k0, e0) ∈ R++ × R+ be arbitrary
but fixed. For any feasible allocation {(kt, et, ybt , c1t , c2t )}∞t=0 ∈ Π(k0, e0) generated by the
maps A and E, we have

∞∑
t=0

γtg(kt, et, y
b
t , c

1
t , c

2
t ) (A.2)

= g(k0, e0, y
b
0, c

1
0, c

2
0) + γ

∞∑
t=0

γtg(kt+1, et+1, y
b
t+1, c

1
t+1, c

2
t+1)

≤ g(k0, e0, y
b
0, c

1
0, c

2
0) + γV(k1, e1)

≤ sup
{
g(k0, e0, y

b, c1, c2) + γV
(
A(k0, y

b, c1, c2), E(e0, y
b)
) ∣∣∣ (yb, c1, c2) ∈ Q(k0)

}
.

The claim now follows from the definition of the supremum: V(k0, e0) is by definition the
smallest upper bound of (A.2) and, analogously, V(k1, e1) the smallest upper bound for
all feasible allocations in Π(k1, e1), where

k1 = A(k0, y
b
0, c

1
0, c

2
0) and e1 = E(e0, y

b
0).

Step 2 (Concavity and continuity of V). We first show that any convex combination of
any two paths {(kjt , e

j
t)}∞t=0, j = 1, 2, associated with two feasible allocations may be

generated by a feasible allocation. To this end, let λ ∈ [0, 1] be arbitrary but fixed and
for each t ≥ 0, set

kλt = λk1t + (1− λ)k2t

eλt = λe1t + (1− λ)e2t .

We will show that for each t ≥ 0, there exists qλt = (ybλt , c
1λ
t , c

2λ
t ) ∈ Q(kλt ) such that

kλt+1 = A(kλt , q
λ
t ) (A.3)

eλt+1 = E(eλt , y
bλ
t ) = 1

1+n

[
(1− ζ)eλt + ϵybλt

]
.

It follows from Lemma 1 that A is a concave function. Hence,

kλt+1 ≤ A(kλt , λq
1
t + (1− λ)q2t ), (A.4)

and the convexity of the set Q(kλt ) implies that λq1t + (1 − λ)q2t ∈ Q(kλt ), where qjt =

(ybjt , c
1j
t , c

2j
t ) ∈ Q(kjt ), j = 1, 2, are the policies in period t that belong to the respective

feasible allocations.

Since E is linear, we have ybλt = λyb1t + (1− λ)yb2t . Given ybλt , it follows from (A.4) that
there exists a consumption bundle (c1λt , c

2λ
t ) such that qλt = (ybλt , c

1λ
t , c

2λ
t ) ∈ Q(kλt ) and
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(A.3) holds. As a consequence, {(kλt , eλt , qλt )}∞t=0 ∈ Π(kλ0 , e
λ
0). Since

c1λt +
c2λt
1+n

> λ
(
c11t +

c21t
1+n

)
+ (1− λ)

(
c12t +

c22t
1+n

)
,

the consumption bundle (c1λt , c
2λ
t ) may be chosen such that

g(kλt , e
λ
t , q

λ
t ) > λg(k1t , e

1
t , q

1
t ) + (1− λ)g(k2t , e

2
t , q

2
t ). (A.5)

The concavity of the value function V is now established as follows. By definition of V ,
for any ε > 0, there exist a feasible allocation

{
(kjt , e

j
t , q

j
t )
}∞
t=0

∈ Π(kj0, e
j
0), j = 1, 2, such

that
∞∑
t=0

γtg(kjt , e
j
t , q

j
t ) > V(kj0, e

j
0)− ε. (A.6)

Since
{
(kλt , e

λ
t , q

λ
t )
}∞
t=0

∈ Π(kλ0 , e
λ
0), it follows from (A.5) that

V(kλ0 , eλ0) ≥
∞∑
t=0

γtg(kλt , e
λ
t , q

λ
t ) ≥ λ

∞∑
t=0

γtg(k1t , e
1
t , q

1
t ) + (1− λ)

∞∑
t=0

γtg(k2t , e
2
t , q

2
t ).

Taking suprema, (A.6) implies

V(kλ0 , eλ0) ≥ λV(k10, e10) + (1− λ)V(k20, e20)− ε.

Since ε > 0 was arbitrary, this shows that V is concave. Concave functions defined on
open subsets of R2 are continuous, e.g., see Rockafellar (1970).

Step 3 (Differentiability of V).

Let (k0, e0) ∈ R++ ×R+ be arbitrary but fixed. We will show in the proof of Theorem 1
that there exists an optimal policy (yb0, c

1
0, c

2
0) ∈ Q(k0) such that

V(k0, e0) = g(k0, e0, y
b
0, c

1
0, c

2
0) + γV

(
A(k0, y

b
0, c

1
0, c

2
0), E(e0, y

b
0)
)
. (A.7)

Given e1 = E(e0, y
b
0), the function Φ : R+ → R+, defined by

Φ(e) := 1+n
ϵ
e1 − 1−ζ

ϵ
e,

satisfies
E(e,Φ(e)) = e1 = E(e0, y

b
0) for all e ∈ R+. (A.8)

Choose an open neighbourhood U (k0, e0) of (k0, e0) and set

c1(k, e) = f(k,Φ(e))− f(k0, y
b
0) + c10 and c2(k, e) ≡ c20,

so that
A(k,Φ(e), c1(k, e), c

2
0) = A(k0, y

b
0, c

1
0, c

2
0) = k1
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for all (k, e) ∈ U (k0, e0). Observe that

yb0 = Φ(e0), c10 = c1(k0, e0), and c20 = c2(k0, e0). (A.9)

From (A.7), we can infer that for each (k, e) ∈ U (k0, e0),

V(k, e) ≥ g(k, e,Φ(e), c1(k, e), c
2
0) + γV(k1, e1)

and thus

V(k, e)− V(k0, e0) ≥ g(k, e,Φ(e), c1(k, e), c
2
0)− g(k0, e0, y

b
0, c

1
0, c

2
0).

This shows that the concave function V is bounded from below on U (k0, e0) by a dif-
ferentiable function. As a consequence, V is differentiable at (k0, e0). Since (k0, e0) was
arbitrary, it follows that V is differentiable on R++ × R+.

Proof of Theorem 1. Step 1 (Existence of policy functions). Without loss of generality,
we may consider period t = 0. Let (k0, e0) ∈ R++ ×R+ be arbitrary but fixed and define
the set

Q(k0, e0) :=
{
(yb, c1, c2, k, e) ∈ R5

+

∣∣∣ (yb, c1, c2) ∈ Q(k0), k = A(k0, y
b, c1, c2)

and e = E(e0, y
b)
}
.

(A.10)

Since each set Q(k0) is convex, each A(k0, ·) is concave, and each E(e0, ·) is linear, each
set Q(k0, e0) is concave. Applying the Bellman equation twice, Lemma 2 implies

V(k0, e0) = sup
{
g(k0, e0, y

b
0, c

1
0, c

2
0) + γg(k1, e1, y

b
1, c

1
1, c

2
1) + γ2V(k2, e2)

∣∣∣
(yb0, c

1
0, c

2
0, k1, e1) ∈ Q(k0, e0) and (yb1, c

1
1, c

2
1, k2, e2) ∈ Q(k1, e1)

}
.

(A.11)

We show that there exists δ0 > 0 such that the supremum in (A.11) is not attained in
any

(yb0, c
1
0, c

2
0, k1, e1) ∈ Q(k0, e0) with either c10 = 0 or c20 = 0 or k1 < δ0.

Set

k2 =
1

1+n

[
f(k1, y

b
1)−

(
c11 +

c21
1+n

)]
and k̂2 =

1
1+n

[
f(k̂1, ŷ

b
1)−

(
ĉ11 +

ĉ21
1+n

)]
. (A.12)

It follows from (A.12) that k2 = k̂2 if and only if

f(k1, y
b
1)− f(k̂1, ŷ

b
1) =

(
c11 +

c21
1+n

)
−
(
ĉ11 +

ĉ21
1+n

)
. (A.13)

Consider (yb0, 0, c20, k1, e1) ∈ Q(k0, e0). Choose ε0 > 0 and (ŷb0, ĉ
1
0, ĉ

2
0) = (yb0, ε0(1+n), c

2
0) ∈
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Q(k0) so that
k̂1 = A(k0, ŷ

b
0, ĉ

1
0, ĉ

2
0) = k1 − ε0 and ê1 = e1.

Next, choose (ŷb1, ĉ
1
1, ĉ

2
1) ∈ Q(k̂1) with ĉ11 < c11, ĉ21 = c21 such that (A.13) holds. Since

ŷb1 ≤ yb1, it follows that k2 = k̂2 and ê2 = E(ê1, ŷ
b
1) ≤ E(e1, y

b
1) = e2 and thus V(k̂2, ê2) ≥

V(k2, e2). Hence, if ε0 > 0 is sufficiently small, the Inada condition on u implies that
(yb0, ε0(1 + n), c20, k̂1, ê1) ∈ Q(k0, e0) attains higher level of utility than (yb0, 0, c

2
0, k1, e1).

Hence, the supremum cannot be attained with c10 = 0. An analogous argument applies
for the case with c20 = 0.

Consider now (yb0, c
1
0, c

2
0, k1, e1) ∈ Q(k0, e0) with 0 < k1 < δ0. Choose ε0, ϵ1 > 0 and

(ŷb0, ĉ
1
0, ĉ

2
0) = (yb0, c

1
0 − ε0, c

2
0) ∈ Q(k0) and (ŷb1, ĉ

1
1, ĉ

2
1) = (yb1, c

1
1 + ε1, c

2
1) ∈ Q(k̂1)

so that k̂1 > k1 and k̂2 = k2 holds via (A.13). Since ŷbj = ybj , j = 0, 1, it follows that
ê1 = e1 and ê2 = e2. Since f(0, 0) = 0, it follows that c11 becomes arbitrarily small if k1 is
arbitrarily small. Hence, if δ0 > 0 is sufficiently small, the Inada condition on u implies
that (yb0, ĉ

1
0, c

2
0, k̂1, ê1) ∈ Q(k0, e0) attains higher level of utility than (yb0, c

1
0, c

2
0, k1, e1).

Since the objective function g + γV in the Bellman equation is strictly concave and
continuous on any compact subset of Q(k0, e0), its maximum is uniquely determined and
attained in the interior of Q(k0, e0). For any given (k0, e0) ∈ R++ × R+, the Bellman
equation thus reads

V(k0, e0) = max
{
g(k0, e0, y

b
0, c

1
0, c

2
0) + γV(k1, e1)

∣∣∣ (yb0, c10, c20, k1, e1) ∈ Q(k0, e0)
}
. (A.14)

The maximiser (yb∗0 , c
1∗
0 , c

2∗
0 ) is uniquely determined and it depends only on (k0, e0).

Therefore, there exist optimal policy functions yb∗ : R++ × R+ → R+ and c1∗, c
2
∗ :

R++ × R+ → R++ with yb∗0 = yb∗(k0, e0) ∈ [0, fb(k0)], c1∗0 = c1∗(k0, e0) > 0, and c2∗0 =

c2∗(k0, e0) > 0.

Step 2 (Existence and uniqueness of the optimal allocation). Since the policy functions
yb∗, c

1
∗, c

2
∗ are well defined on R++ × R+, it follows that for any given initial condition

(k0, e0) ∈ R++ × R+, there exists a uniquely determined optimal allocation{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

∈ Π(k0, e0),

which is recursively defined by

k∗t+1 = A
(
k∗t , y

b
∗(k

∗
t , e

∗
t ), c

1
∗(k

∗
t , e

∗
t ), c

2
∗(k

∗
t , e

∗
t )
)

e∗t+1 = E
(
e∗t , y

b
∗(k

∗
t , e

∗
t )
)

with (k∗0, e
∗
0) = (k0, e0).

Step 3 (First-order conditions). For better readability, we omit the ∗ superscript indi-
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cating the optimal allocation. Setting

V (k0, e0, y
b, c1, c2) = g(k0, e0, y

b, c1, c2) + V
(
A(k0, y

b, c1, c2), E(e0, y
b)
)
,

the Lagrangian for Problem (A.14) is

L(yb, c1, c2, λ00, λ10, λ20) = V (k0, e0, y
b, c1, c2)+λ00

[
f(k0, y

b)−c1− c2

1+n

]
+λ10y

b+λ20
[
fb(k0)−yb

]
.

By Lemma 2, the value function V is differentiable. Setting

k1 = A(k0, y
b
0, c

1
0, c

2
0) and e1 = E(e0, y

b
0) =

z0
1+n

,

then differentiation of L w.r.t. (yb, c1, c2) shows that the first-order conditions for the
optimal policy (yb0, c

1
0, c

2
0) ∈ Q(k0) are

−(1 + β
γ
)ϵµ′(z0) +

γ
1+n

∂V
∂k

(k1, e1)
∂f

∂yb
(k0, y

b
0) +

γ
1+n

∂V
∂e

(k1, e1)ϵ+ λ10 − λ20
!
= 0 (A.15)

u′(c10)−
γ

1+n

∂V
∂k

(k1, e1)
!
= λ00 (A.16)

β
γ
u′(c20)−

γ
(1+n)2

∂V
∂k

(k1, e1)
!
=

λ0
0

1+n
. (A.17)

The complementary slackness conditions for Problem (A.14) are

λ00

[
f(k0, y

b
0)− c10 −

c20
1+n

]
!
= 0 (A.18)

λ10y
b
0

!
= 0 (A.19)

λ20
[
fb(k0)− yb0

] !
= 0 (A.20)

and the non-negativity conditions are λ00, λ10, λ20 ≥ 0. As we have shown in Step 1, the
optimal policy (yb0, c

1
0, c

2
0) satisfies k1 = A(k0, y

b
0, c

1
0, c

2
0) > 0. Consequently, the comple-

mentary slackness condition (A.18) holds with λ00 = 0. Conditions (A.16) and (A.17),
therefore, become

u′(c10)

βu′(c20)
!
= 1+n

γ
(A.21)

u′(c10)
!
= γ

1+n

∂V
∂k

(k1, e1). (A.22)

Equation (A.21) is the first-order condition (3.7) given in the theorem. By the Envelope
theorem (e.g., see Mas-Colell, Whinston, & Green, 1995, p. 965), we have

∂V

∂k
(k0, e0, y

b
0, c

1
0, c

2
0) =

γ
1+n

∂V
∂k

(k1, e1)
∂f

∂k
(k0, y

b
0) + λ20f

′
b(k0). (A.23)

Moreover, the Bellman equation implies that the derivatives of the objective function V
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and the value function V coincide, so that

∂V
∂k

(k0, e0) =
∂V

∂k
(k0, e0, y

b
0, c

1
0, c

2
0). (A.24)

It follows from (A.22) – (A.24) that

∂V
∂k

(k0, e0) = u′(c10)
[∂f
∂k

(k0, y
b
0) +

λ2
0

u′(c10)
f ′
b(k0)

]
. (A.25)

Inserting (A.25) and (A.21), Condition (A.22) then takes the form

u′(c10)

βu′(c21)
!
=
∂f

∂k
(k1, y

b
1) +

λ2
1

u′(c11)
f ′
b(k1). (A.26)

Re-normalising the Lagrange multiplier, then (A.26) is the first-order condition (3.8)
stated in the theorem.

By the same vein, the Envelope theorem and the Bellman equation imply

∂V
∂e

(k0, e0) =
∂g

∂e
(k0, e0, y

b
0, c

1
0, c

2
0) +

γ(1−ζ)
1+n

∂V
∂e

(k1, e1)

= −
(
1 + β

γ

)
µ′(z0)(1− ζ) + γ(1−ζ)

1+n

∂V
∂e

(k1, e1). (A.27)

It follows from (A.15), (A.22), and (A.27) that

∂V
∂e

(k0, e0) = −u′(c10)
(1−ζ)

ϵ

[ ∂f
∂yb

(k0, y
b
0) +

λ1
0−λ2

0

u′(c10)

]
. (A.28)

Inserting (A.25) and (A.28) into (A.15) then yields

γ(1−ζ)
1+n

u′(c11)

u′(c10)

[
∂f

∂yb
(k1, y

b
1) +

λ1
1−λ2

1

u′(c11)

]
+ ϵ(1 + β

γ
)
µ′(z0)

u′(c10)
!
=

∂f

∂yb
(k0, y

b
0) +

λ1
0−λ2

0

u′(c10)
. (A.29)

Re-normalising the shadow prices and recursively applying (A.29) then establishes the
first-order condition (3.9) given in the theorem.

Proof of Corollary 1. Let (kt, et) ∈ R++ × R+ be arbitrary but fixed.

Part (i). Setting ζ = 1 and

Ψ(kt, et, y
b
t ) := ϵ

(
1 + β

γ

) µ′(ϵybt )

u′(c1∗(kt, et))
,

the first-order condition (3.9) takes the form

Ψ(kt, et, y
b
t )

!
= 1− ϱ(Ω(kt, y

b∗
t )) + λ1t − λ2t . (A.30)

There are three possible cases.
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Case 1. λ1t > 0 and λ2t = 0. Then yb∗t = 0 due to (3.10). Since Ω(kt, 0) = Ωg(kt), it
follows from (A.30) that

λ1t ≥ 0 ⇐⇒ ϱ(Ωg(kt)) ≥ 1−Ψ(kt, et, 0).

Case 2. λ1t = 0 and λ2t > 0. Then yb∗t = fb(kt) due to (3.10). Since Ω(kt, fb(kt)) = Ωb(kt),
it follows from (A.30) that

λ2t ≥ 0 ⇐⇒ ϱ(Ωb(kt)) ≤ 1−Ψ(kt, et, fb(kt)).

Case 3. λ1t = λ2t = 0. In this case, (A.30) implies that yb∗t ∈ [0, fb(kt)] is determined by

Ψ(kt, et, y
b∗
t )

!
= 1− ϱ(Ω(kt, y

b∗
t )).

Part (ii). If µ′ ≡ 0, then Ψ ≡ 0 and Cases 1 – 3 above imply that

yb∗t =


0 if ϱ(Ωg(kt)) ≥ 1

fb(kt) if ϱ(Ωb(kt)) ≤ 1

solves ϱ(Ω(kt, yb∗t )) = 1 otherwise

. (A.31)

It remains to show that (A.31) solves the maximisation problem

max
0≤yb≤fb(kt)

f(kt, y
b). (A.32)

The Lagrangian for (A.32) is

L(yb, ξ1t , ξ2t ) = f(kt, y
b) + ξ1t y

b + ξ2t
[
fb(kt)− yb

]
.

A solution yb∗t must satisfy the first-order condition

1− ϱ(Ω(kt, y
b∗
t ))

!
= ξ2t − ξ1t (A.33)

and the complementary slackness conditions

ξ1t y
b∗
t

!
= 0 and ξ2t

[
fb(kt)− yb∗t

] !
= 0, ξ1t , ξ

2
t ≥ 0.

These conditions are sufficient for a maximum since, by Lemma 1, the objective function
f is concave. Since the first-order condition (A.33) coincides with the first-order condition
(A.30) if ψ ≡ 0, it follows that the optimal policy yb∗t is a maximiser of (A.32) if µ′ ≡ 0.

Proof of Theorem 2. Using the function ψ defined in (3.17), it follows from Theorem
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1 (ii) that the pair (k̄γ, ȳ
b
γ) must satisfy the first-order conditions

∂f

∂k
(k̄, ȳb)

!
= 1+n

γ
− λ̄2f ′

b(k̄) (A.34)

∂f

∂yb
(k̄, ȳb)

!
= ψ(k̄, ȳb)− λ̄1 + λ̄2 (A.35)

together with the complementary slackness conditions

λ̄1 ȳb
!
= 0 and λ̄2

[
fb(k̄)− ȳb

] !
= 0 (A.36)

and the non-negativity conditions λ̄1, λ̄2 ≥ 0. There are three possible cases.

Case 1. Let λ̄1 > 0 and λ̄2 = 0. Then ȳbγ = 0 due to (A.36). Since Ω(k̄, 0) = Ωg(k̄),
Lemma 1 implies that (A.34) takes the form

f ′
g(k̄)

!
= 1+n

γ
− 1 + δ. (A.37)

It follows from Assumption 1 that (A.37) admits a unique solution, which is the capital-
labour ratio k̄g. Setting ω̄g = Ωg(k̄

g), then (A.35) implies that λ̄1 ≥ 0 if and only if

ϱ(ω̄g) ≥ 1− ψ(k̄g, 0).

Therefore, (k̄γ, ȳbγ) = (k̄g, 0) is a steady state if ϱ(ω̄g) ≥ 1− ψ(k̄g, 0).

Case 2. Let λ̄1 = λ̄2 = 0. Using Lemma 1, Condition (A.35) takes the form

ϱ(Ω(k̄, ȳb))
!
= 1− ψ(k̄, ȳb) (A.38)

and (A.34) the form
f ′
g

(
κg(Ω(k̄, ȳ

b))
) !
= 1+n

γ
− 1 + δ. (A.39)

Condition (A.39) implies that

Ω(k̄, ȳb)
!
= ω̄g and ȳb

!
= yb(k̄, ω̄

g). (A.40)

Inserting (A.40) into (A.38), it follows that the capital-labour ratio is determined by

ϱ(ω̄g)
!
= 1− ψ(k̄, yb(k̄, ω̄

g)). (A.41)

By the intermediate-value theorem, a solution

k̄γ ∈
(
min{κg(ω̄g), κb(ω̄

g)},max{κg(ω̄g), κb(ω̄
g)}

)
to (A.41) exists if either (3.18) or (3.19) holds. Given k̄γ, (A.40) implies that the brown
production plan is ȳbγ = yb(k̄γ, ω̄

g) ∈
(
0, fb(k̄γ)

)
.

Case 3. Let λ̄1 = 0 and λ̄2 > 0. Then ȳbγ = fb(k̄γ) due to (A.36). Since Ω(k̄, fb(k̄)) =
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Ωb(k̄), Lemma 1 implies that Condition (A.34) takes the form

λ̄2
!
=

1+n
γ

− 1 + δ − f ′
g

(
κg(Ωb(k̄))

)
f ′
b(k̄)

(A.42)

and (A.35) the form
λ̄2

!
= 1− ψ(k̄, fb(k̄))− ϱ

(
Ωb(k̄)

)
. (A.43)

Inserting (A.42) into (A.43), it follows that the capital-labour ratio is determined by

f ′
b(k̄)

[
1− ψ(k̄, fb(k̄))

] !
= 1+n

γ
− 1 + δ. (A.44)

Moreover, it can be read off (A.43) that

λ̄2 ≥ 0 ⇐⇒ Ωb(k̄) ≥ ω̄g ⇐⇒ k̄ ≥ κb(ω̄
g). (A.45)

The existence of a solution to (A.44) is established using the intermediate-value theorem.
Setting k̄b = f ′−1

b (1+n
γ

− 1 + δ), we have

f ′
b(k̄

b)
[
1− ψ(k̄b, fb(k̄

b))
]
< 1+n

γ
− 1 + δ.

Since f ′′
j < 0 and κ′j > 0, j = g, b,

ϱ(ω̄g) =

1+n
γ

− 1 + δ

f ′
b(κb(ω̄

g))
=
f ′
b

(
κb(Ωb(k̄

b))
)

f ′
b

(
κb(Ωg(k̄g))

) < 1 ⇐⇒ Ωg(k̄
g) < Ωb(k̄

b) ⇐⇒ κb(ω̄
g) < k̄b.

On the other hand,

f ′
b(κb(ω̄

g))
[
1− ψ

(
κb(ω̄

g), fb(κb(ω̄
g))

)]
≥ 1+n

γ
− 1 + δ

if and only if
1− ψ

(
κb(ω̄

g), fb(κb(ω̄
g))

)
≥ ϱ(ω̄g). (A.46)

Therefore, if (A.46) holds, then there exists a solution k̄γ ∈ [κb(ω̄
g), k̄b) to (A.44) such

that k̄γ together with ybγ = fb(k̄γ) is a steady state.

Proof of Corollary 2. The first claim is included by setting ψ ≡ 0 in the proof of
Theorem 2. The second claim obtains as follows. The Lagrangian is

L(k̄, ȳb, λ1, λ2) = ϕ(k̄, ȳb) + λ1ȳ
b + λ2

[
fb(k̄)− ȳb

]
.

The first-order conditions are

λ2f
′
b(k̄) = n+ δ − f ′

g

(
κg(Ω(k̄, ȳ

b))
)

(A.47)

1 = ϱ(Ω(k̄, ȳb)) + λ2 − λ1 (A.48)
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and the complementary slackness conditions are

λ1ȳ
b = 0 and λ2

[
fb(k̄)− ȳb

]
= 0, λ1, λ2 ≥ 0 (A.49)

There are three cases.

Case 1. λ1 > 0 and λ2 = 0. Then (A.49) implies ȳb = 0 and, since Ω(k̄, 0) = Ωg(k̄),
(A.47) takes the form

f ′
g(k̄) = n+ δ. (A.50)

Assumption 1 implies that (A.50) admits a unique solution 0 < k̄g <∞. The first-order
condition (A.48) takes the form

λ1 = ϱ(ω̄g)− 1,

so that λ1 ≥ 0 if and only if ϱ(ω̄g) ≥ 1. Moreover, ϕ(k̄g, 0) = wg(k̄
g).

Case 2. λ1 = 0 and λ2 > 0. Then (A.49) implies ȳb = fb(k̄). Since Ω(k̄, fb(k̄)) = Ωb(k̄),
(A.47) becomes

λ2 f
′
b

(
κb(Ωb(k̄))

)
= n+ δ − f ′

g

(
κg(Ωb(k̄))

)
(A.51)

and (A.48) becomes
λ2 = 1− ϱ(Ωb(k̄)). (A.52)

Inserting (A.52) into (A.51), it follows that

f ′
b(k̄) = n+ δ. (A.53)

Assumption 1 implies that (A.53) admits a unique solution 0 < k̄b <∞. As shown above,

λ2 ≥ 0 ⇐⇒ ϱ(Ωb(k̄
b)) ≤ 1 ⇐⇒ ϱ(ω̄g) ≤ 1.

Moreover, ϕ(k̄b, fb(k̄b)) = wb(k̄
b).

Case 3. λ1 = λ2 = 0. Then (A.47) and (A.48) take the form

f ′
g

(
κg(Ω(k̄, ȳ

b))
)
= n+ δ (A.54)

ϱ(Ω(k̄, ȳb)) = 1. (A.55)

Condition (A.54) implies Ω(k̄, ȳb) = ω̄g, so that (A.55) implies ϱ(ω̄g) = 1. In this case,
wg(k̄

g) = wb(k̄b) so that ϕ attains the same maximum in either boundary allocation (k̄g, 0)

and (k̄b, fb(k̄
b)).

Proof of Proposition 2. Let (kt, et) ∈ R++ × R+ and ηt = η(kt, et) ∈ R be arbitrary
but fixed. Since capital and labour are perfectly mobile and paid their marginal products,
an interior temporary equilibrium in which both sectors are producing obtains for a wage-
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rental ratio ωt ∈
[
Ωmin(kt),Ωmax(kt)

]
such that

ϱ(ωt)
!
= 1− ϵηt. (A.56)

The concavity of the production-possibility frontier implies that ϱ(Ωg(kt)) ≤ ϱ(Ωb(kt)),
so that a solution ωt ∈

[
Ωmin(kt),Ωmax(kt)

]
to (A.56) exists if and only if ϱ(Ωg(kt)) ≤

1−ϵηt ≤ ϱ(Ωb(kt)). Since ϱ is either monotonically increasing or decreasing on the interval
in question, the equilibrium wage-rental is uniquely determined by ωt = ϱ−1(1− ϵηt).

A solution to (A.56) does not exist if either 1 − ϵηt < ϱ(Ωg(kt)) or ϱ(Ωb(kt)) < 1 − ϵηt.
In either case, a boundary temporary equilibrium is obtained. In the first case, we have

f ′
g(κg(ω)) > [1− ϵηt]f

′
b(κb(ω)) and wg(κg(ω)) > [1− ϵηt]wb(κb(ω))

for all ω ∈
[
Ωmin(kt),Ωmax(kt)

]
, so that the green sector receives the entire capital and

labour. Hence, the equilibrium wage-rental ratio is ωt = Ωg(kt). In the second case,

f ′
g(κg(ω)) < [1− ϵηt]f

′
b(κb(ω)) and wg(κg(ω)) < [1− ϵηt]wb(κb(ω))

for all ω ∈
[
Ωmin(kt),Ωmax(kt)

]
, so that the brown sector receives the entire capital and

labour. Hence, the equilibrium wage-rental ratio is ωt = Ωb(kt).

Hence, for any given (kt, et) ∈ R++ × R+ and ηt = η(kt, et) ∈ R, the equilibrium wage-
rental ratio is uniquely determined by ωt = Ωeq(kt, ηt), with the function Ωeq as defined
in the proposition.

Proof of Lemma 3. Setting et+1 = Eeq(kt, et), Condition (4.9) is equivalent to

τ(ket , et+1) ≥ −
1

1+n
R(ket , et+1)w

d(kt, et) + η(ket , et+1)ϵ y
b
eq(k

e
t , et+1)

w(ket , et+1)
. (A.57)

Since the tax-policy rules η, τ define a feasible fiscal policy in the sense of Definition 2,
they satisfy

τ(ket , et+1) ≥ −
R(ket , et+1)k

e
t + η(ket , et+1)ϵ y

b
eq(k

e
t , et+1)

w(ket , et+1)
(A.58)

for all (ket , et+1) ∈ R++ × R+. The claim now follows from the fact that for all 0 ≤ ket ≤
1

1+n
wd(kt, et), the r.h.s. in (A.58) is larger than the r.h.s. in (A.57).

Proof of Proposition 3. Let (kt, et) ∈ R++ ×R+ and wd
t = wd(kt, et) > 0 be arbitrary

but fixed and consider the function

E(ke, kt, et) := 1
1+n

s
(
wd(kt, et), d

(
ke, Eeq(kt, et)

)
, R

(
ke, Eeq(kt, et)

))
− ke.
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A correct forecast is a solution 0 ≤ ket ≤ 1
1+n

wd
t to

E(ket , kt, et)
!
= 0. (A.59)

For better readability, set et+1 = Eeq(kt, et). To establish the existence of ket , we use the
intermediate-value theorem. Since savings are bounded from above by wd

t , we have

E( wd
t

1+n
, kt, et) ≤ 0.

By Assumption 1, we have fg(0) = fb(0) = 0 so that d(0, et+1) = 0. Since old-age
consumption is ordinary, R 7→ Rs(wd, d, R) + d is increasing for each wd and each d.
Consequently,

lim
ke→0

[
R(ke, et+1)s

(
wd

t , d(k
e, et+1), R(k, et+1)

)
+ d(ke, et+1)

]
= lim

ke→0
R(ke, et+1)s

(
wd

t , 0, R(k
e, et+1)

)
≥ c̄ > 0.

Moreover, Assumption 1 implies lim
ke→0

R(ke, et+1)k
e = 0. It follows that

lim
ke→0

s
(
wd

t , d(k
e, et+1), R(k

e, et+1)
)

ke
= lim

ke→0

R(ke, et+1)s
(
wd

t , d(k
e, et+1), R(k

e, et+1)
)

R(ke, et+1)ke

≥ lim
ke→0

c̄

R(ke, et+1)ke
= ∞.

As a consequence, in a sufficiently small neighbourhood (0, ϵ) of the origin, we have

E(ke, kt, et) > 0 for all ke ∈ (0, ϵ).

The existence of a solution 0 < ket ≤ wd
t

1+n
to (A.59) now follows from the intermediate-

value theorem. Uniqueness of ket is established next. By Assumption 2, d 7→ s(wd
t , d, R)

is strictly decreasing for all R > 0. By Assumption 1, ke 7→ R(ke, et+1) is non-increasing.
If, in addition, R 7→ s(wd

t , d, R) is non-decreasing for all d and ke 7→ d(ke, et+1) is non-
decreasing, then ke 7→ E(ke, kt, et) is strictly decreasing and the solution ket uniquely
determined.

Since (kt, et) ∈ R++ × R+ was arbitrary, it follows that there exists a forecasting rule G
which is perfect in the sense of Definition 3. Note that if kt = 0, then wd(0, et) = 0 so
that ket = 0 is the unique solution to (A.59).

Proof of Theorem 3. Let an arbitrary optimal allocation
{
(k∗t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

with
corresponding Lagrange multipliers

{
(λ1∗t , λ

2∗
t )

}∞
t=0

be given, and consider some arbitrary
but fixed period t ≥ 0. Using the function Ω given in Lemma 1, denote the optimal
wage-rental ratio by

ω∗
t := Ω

(
k∗t , y

b
∗(k

∗
t , e

∗
t )
)
.
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The proof proceeds by induction. Suppose that the current state of the economy is
optimal, i.e., (kt, et) = (k∗t , e

∗
t ).

Step 1 (Emissions tax rate). There exist thresholds η1, η2 ∈ R such that

Ωeq(k
∗
t , η) = Ωb(k

∗
t ) for all η ≤ η1 and Ωeq(k

∗
t , η) = Ωg(k

∗
t ) for all η ≥ η2.

Hence, there exists an optimal emissions tax rate η∗t ∈ [η1, η2] such that

Ωeq(k
∗
t , η

∗
t ) = ω∗

t . (A.60)

η∗t is unique since η 7→ Ωeq(k
∗
t , η) is monotonic. If the government implements η∗t , then

the production plan in period t is optimal because (A.60) and (4.4) imply that

ybt = ybeq(kt, et) = ybeq(k
∗
t , e

∗
t ) = yb∗t .

Consequently, the pollution stock at the beginning of t+ 1 is optimal

et+1 = E
(
kt, y

b
eq(kt, et)

)
= E(k∗t , y

b∗
t ) = e∗t+1. (A.61)

Step 2 (Gross return on capital). Using Lemma 1, the first-order condition for an optimal
policy (3.9) can be written as

1− ϱ(ω∗
t ) + λ1∗t − λ2∗t =

ϵ(1 + β
γ
)

u′(c1∗t )

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′((1 + n)e∗j+1

)
. (A.62)

It follows from (A.62) that ω∗
t = Ωg(k

∗
t ) and λ1∗t ≥ 0, λ2∗t = 0 if and only if

ϱ(Ωg(k
∗
t )) ≥ 1−

ϵ(1 + β
γ
)

u′(c1∗t )

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′((1 + n)e∗j+1

)
, (A.63)

whereas ω∗
t = Ωb(k

∗
t ) and λ2∗t ≥ 0, λ1∗t = 0 if and only if

ϱ(Ωb(k
∗
t )) ≤ 1−

ϵ(1 + β
γ
)

u′(c1∗t )

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′((1 + n)e∗j+1

)
. (A.64)

It follows from (A.60), (A.63), (A.64), and Proposition 2 that

η∗t =
(1 + β

γ
)

u′(c1∗t )

∞∑
j=t

[
γ(1−ζ)
1+n

]j−t

µ′((1 + n)e∗j+1

)
. (A.65)

Inserting (A.65), the first-order condition (A.62) takes the form

1− ϵη∗t + λ1∗t − λ2∗t = ϱ(ω∗
t ). (A.66)
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We next show that
R(k∗t , e

∗
t ) =

∂f

∂k
(k∗t , y

b∗
t ) + λ2∗t f

′
b(κb(ω

∗
t )). (A.67)

From (4.3) we know that

R(k∗t , e
∗
t ) = 1− δ +max

{
f ′
g(κg(ω

∗
t )), [1− ϵη∗t ]f

′
b(κb(ω

∗
t ))

}
,

and from Lemma 1 that

∂f

∂k
(k∗t , y

b∗
t ) = 1− δ + f ′

g(κg(ω
∗
t )). (A.68)

It follows from (A.66) that

λ1∗t ≥ 0, λ2∗t = 0 ⇐⇒ f ′
g(κg(ω

∗
t )) ≥ [1− ϵη∗t ]f

′
b(κb(ω

∗
t )).

Hence, (A.67) holds if ω∗
t ̸= Ωb(k

∗
t ). Moreover, (A.66) implies

ω∗
t = Ωb(k

∗
t ), λ

1∗
t = 0, λ2∗t > 0 ⇐⇒ f ′

g(κg(ω
∗
t )) < [1− ϵη∗t ]f

′
b(κb(ω

∗
t )).

In this case,
R(k∗t , e

∗
t ) = 1− δ + [1− ϵη∗t ]f

′
b(κb(ω

∗
t )) (A.69)

and rearranging (A.66) yields

λ2tf
′
b(κb(ω

∗
t )) = [1− ϵη∗t ]f

′
b(κb(ω

∗
t ))− f ′

g(κg(ω
∗
t )). (A.70)

Inserting (A.68) – (A.70) shows that (A.67) holds if ω∗
t = Ωb(k

∗
t ).

Substituting (A.67), the social planner’s first-order condition (3.8) takes the form

u′(c1∗t )

βu′(c2∗t+1)
= R(k∗t+1, e

∗
t+1). (A.71)

Step 3 (Transfers). We next show that there exist feasible intergenerational transfers.
The feasibility property of the optimal allocation implies

k∗t+1 = A(k∗t , y
b∗
t , c

1∗
t , c

2∗
t )

= 1
1+n

[
f(k∗t , y

b∗
t )− c1∗t − c2∗t

1+n

]
= 1

1+n

[
w(k∗t , e

∗
t ) +R(k∗t , e

∗
t )k

∗
t + η∗t ϵy

b∗
t − c1∗t − c2∗t

1+n

]
> 0, (A.72)

where the last equation follows from the balance equation (4.5). Let

dt := c2∗t −R(k∗t , e
∗
t )(1 + n)k∗t (A.73)

be the old-age transfer, and the corresponding lump-sum transfer to the young generation
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be
at = η∗t ϵy

b∗
t − dt

1+n
. (A.74)

Using (A.73) and (A.74), it follows from (A.72) that

c1∗t = w(k∗t , e
∗
t ) + η∗t ϵy

b∗
t − dt

1+n
− (1 + n)k∗t+1 = w(k∗t , e

∗
t ) + at − (1 + n)k∗t+1 (A.75)

c2∗t+1 = dt+1 +R(k∗t+1, e
∗
t+1)(1 + n)k∗t+1. (A.76)

Conditions (A.71), (A.75), and (A.76) coincide with the optimality conditions for an
individual savings decision of a young agent who has the disposable income w(k∗t , e∗t )+at
and correctly anticipates the return R(k∗t+1, e

∗
t+1) and the old-age transfer payment dt+1.

Hence,
k∗t+1 =

1
1+n

s
(
w(k∗t , e

∗
t ) + at, dt+1, R(k

∗
t+1, e

∗
t+1)

)
(A.77)

so that under perfect foresight, kt+1 = k∗t+1, c1t = c1∗t , and c2t+1 = c2∗t+1.

To translate at into an income tax rate τ ∗t , set

τ ∗t := − at
w(k∗t , e

∗
t )
. (A.78)

Inserting (A.72) – (A.74) into (A.78), it follows that

τ ∗t = −
R(k∗t , e

∗
t )k

∗
t + η∗t ϵy

b∗
t − c2∗t

1+n

w(k∗t , e
∗
t )

=
w(k∗t , e

∗
t )− c1∗t − (1 + n)k∗t+1

w(k∗t , e
∗
t )

. (A.79)

Since the allocation is optimal, it satisfies k∗t+1 > 0 and c1∗t , c
2∗
t > 0, so that it follows

from (A.79) that τ(k∗t , η∗t ) < τ ∗t < 1. Hence, the fiscal policy (η∗t , τ
∗
t ) is feasible. Since

(k∗t , e
∗
t ) ∈ R++ × R+ was arbitrary, it is feasible in the sense of Definition 2.

Since
w(k∗t , e

∗
t ) + at = (1− τ ∗t )w(k

∗
t , e

∗
t ) = wd(k∗t , e

∗
t )

and
dt+1 = (1 + n)

[
η∗t+1ϵy

b∗
t+1 + τ ∗t+1w(k

∗
t+1, e

∗
t+1)

]
= d(k∗t+1, e

∗
t+1),

(A.77) takes the form

k∗t+1 =
1

1+n
s
(
wd(k∗t , e

∗
t ), d(k

∗
t+1, e

∗
t+1), R(k

∗
t+1, e

∗
t+1)

)
.

Since the period t was arbitrary, induction implies that there exists a series of feasible
tax rates {(η∗t , τ ∗t }∞t=0 such that

{
(k⋆t , e

∗
t , y

b∗
t , c

1∗
t , c

2∗
t )

}∞
t=0

is a perfect-foresight allocation.

It remains to establish the optimal tax-policy rules. It follows directly from (A.60) and
(A.79) that the tax rates η∗t and τ ∗t depend on the current state only (k∗t , e

∗
t ). Since the

initial conditions (k0, e0) ∈ R++ × R+ are arbitrary, there must exist tax-policy rules of
the form

η∗, τ∗ : R++ × R+ → R
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such that η∗t = η∗(k
∗
t , e

∗
t ) and τ ∗t = τ∗(k

∗
t , e

∗
t ) for each t ≥ 0.

Proof of Corollary 3. We prove the corollary for a more general case. Consider an
arbitrary steady state (k̄, ȳb) ∈ R++ × R+ with 0 ≤ ȳb ≤ fb(k̄) and ē = ϵ

n+ζ
ȳb. In

particular, this can be the modified golden-rule steady state. Observe that any feasible
steady state must satisfy (1 + n)k̄ < f(k̄, ȳb). By Proposition 2, there exist thresholds
η1, η2 ∈ R such that

Ωeq(k̄, η) = Ωb(k̄) for all η ≤ η1 and Ωeq(k̄, η) = Ωg(k̄) for all η ≥ η2.

Hence, there exists η̄ ∈ [η1, η2] such that Ωeq(k̄, η̄) = Ω(k̄, ȳb). Given η̄, the factor prices
are w̄ = w(k̄, ē) and R̄ = R(k̄, ē). Observe that

τ(k̄, η̄) < 1 ⇐⇒ −R̄k̄ + η̄ϵȳb

w̄
< 1 ⇐⇒ w̄ + R̄k̄ + η̄ϵȳb > 0.

Since the balance equation (4.5) implies w̄ + R̄k̄ + η̄ϵȳb = f(k̄, ȳb) > 0, it follows that
τ(k̄, η̄) < 1. Thus, the range of feasible steady-state income tax rates is well defined by[
τ(k̄, η̄), 1

]
. Observe that for the modified golden-rule steady state, it follows from (4.13)

that

η̄ =
1 + β

γ

1 + γ(1−ζ)
1+n

µ′((1 + n)ēγ)

u′(c̄1γ)
=
ψ(k̄γ, ȳ

b
γ)

ϵ
=: η̄γ.

Theorem 2 now implies that

R(k̄γ, ēγ) = 1− δ +max
{
f ′
g

(
κg(Ωeq(k̄γ, η̄γ))

)
,
[
1− ϵη̄γ

]
f ′
b

(
κb(Ωeq(k̄γ, η̄γ))

)}
= 1− δ +max

{
f ′
g

(
κg(Ωeq(k̄γ, η̄γ))

)
,
[
1− ψ(k̄γ, ȳ

b
γ)
]
f ′
b

(
κb(Ωeq(k̄γ, η̄γ))

)}
= 1+n

γ
.

It follows from Condition (4.11) that given the optimal steady-state emissions tax rate
η̄, the optimal steady-state income tax rate τ̄ is determined by a solution to

(1 + n)k̄
!
= s

(
(1− τ)w̄, (1 + n)[η̄ϵȳb + τw̄], R̄

)
=: h(τ). (A.80)

Observe that Condition (A.80) is nothing but (4.16). Using the intermediate-value the-
orem, its existence is established next. Since savings are bounded from above by the
disposable income, we have

h(1) = s(0, (1 + n)f(k̄, ȳb), R̄) = 0.

On the other hand, by construction of the lower bound τ(k̄, η̄),

h
(
τ(k̄, η̄)

)
= s

(
f(k̄, ȳb),−(1 + n)R̄k̄, R̄

)
. (A.81)
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The savings function on the r.h.s. of (A.81) solves the first-order condition

u′
(
f(k̄, ȳb)− s

(
f(k̄, ȳb),−(1 + n)R̄k̄, R̄

))
βu′

(
R̄
[
s
(
f(k̄, ȳb),−(1 + n)R̄k̄, R̄

)
− (1 + n)k̄

]) = R̄. (A.82)

Due to the Inada condition on u, the agent chooses strictly positive amounts of both
youthful and old-age consumption. Therefore,

(1 + n)k̄ < s
(
f(k̄, ȳb),−(1 + n)R̄k̄, R̄

)
< f(k̄, ȳb).

It follows that
h(1) < (1 + n)k̄ < h

(
τ(k̄, η̄)

)
,

so that a solution τ̄ ∈
(
τ(k̄, η̄), 1

)
to (A.80) exists. Since Assumption 2 implies h′ < 0,

the solution τ̄ is uniquely determined.

Proof of Proposition 4. If the marginal damage is a constant d > 0, then (3.9) reads

∂f

∂yb
(k∗t , y

b∗
t ) + λ1t − λ2t =

ϵ(1 + β
γ
)

1− γ(1−ζ)
1+n

d

u′(c1∗t )
. (A.83)

In a local neighbourhood of a mixed modified golden-rule steady state, we have 0 < yb∗t <

fb(k
∗
t ) such that λ1t = λ2t = 0, t ≥ 0. It follows from (3.7), (3.8), and (A.83) that

∂f

∂yb
(k∗t+1, y

b∗
t+1)

∂f

∂yb
(k∗t , y

b∗
t )

= γ
1+n

∂f

∂k
(k∗t+1, y

b∗
t+1). (A.84)

Inserting the partial derivatives of f given in Lemma 1 into (A.84) yields

1− ϱ(ω∗
t+1)

1− ϱ(ω∗
t )

= γ
1+n

[
1− δ + f ′

g(κg(ω
∗
t+1))

]
. (A.85)

By Proposition 2, 1− ϱ(ω∗
t ) = ϵη∗t so that (A.85) takes the form (4.20).
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