Speaker
Description
The air-sea gas flux is proportional to the difference of partial pressure between the sea-water and the overlying atmosphere multiplied by gas transfer velocity k, a measure of the effectiveness of the gas exchange. Because wind is the source of turbulence making the gas exchange more effective, k is usually parameterized by wind speed. Unfortunately, measured values of gas transfer velocity at a given wind speed have a large spread in values. Surfactants have been long suspected as the main reason of this variability but few measurements of gas exchange and surfactants have been performed at open sea simultaneously and therefore their results were inconclusive. Only recently, it has been shown that surfactants may decrease the CO2 air-sea exchange by up to 50%. However the labour intensive methods used for surfactant study make it impossible to collect enough data to map the surfactant coverage or even create a gas transfer velocity parameterization involving a measure of surfactant activity.
Previous research done by our group showed that fluorescence parameters allow estimation the surfactant enrichment of the surface microlayer, as well as types and origin of fluorescent organic matter involved. We plan to measure, from a research ship, all the variables needed for calculation of gas transfer velocity k (namely CO2 partial pressure both in water and in air as well as vertical flux of this trace gas) and to use mathematical optimization methods to look for a parameterization involving wind speed and one of the fluorescence parameters which will minimize the residual k variability. Although our research will still involve water sampling and laboratory fluorescence measurements, the knowledge of which absorption and fluorescence emission bands are the best proxy for surfactant activity may allow to create remote sensing products (fluorescence lidars) allowing continuous measurements of surfactant activity at least from the ship board. The improved parameterization of the CO2 gas transfer velocity will allow better constraining of basin-wide and global air-sea fluxes, an important component of global carbon budget. Our group is at present in mid a four year project, SURETY (NCN grant no. 2021/41/B/ST10/00946) aiming at estimating how much surfactants affect gas transfer velocity, and choose optical parameters suitable for parameterization of the process. This presentation aims at present our motivation and first results.