Speaker
Description
Coagulation equations describe the evolution in time of a system of particles that are characterized by their volume. Multi-dimensional coagulation equations have been used in recent years in order to include information about the system of particles which cannot be otherwise incorporated. Depending on the model, we can describe the evolution of the shape, chemical composition or position in space of clusters. In this talk, we focus on a model that is inhomogeneous in space and contains a transport term in the spatial variable modeling the sedimentation of clusters. We prove local existence of mass-conserving solutions for a class of coagulation rates for which in the space homogeneous case instantaneous gelation (i.e., instantaneous loss of mass) occurs.