Speaker
Manuel Friedrich
Description
In this talk, I present a linearization result for quasistatic fracture evolution in nonlinear elasticity. As the stiffness of the material tends to infinity, we show that rescaled displacement fields and their associated crack sets converge to a solution of quasistatic crack growth in linear elasticity without any a priori assumptions on the geometry of the crack set. The proof relies on a careful study of unilateral global minimality, as determined by the nonlinear evolutionary problem, and its linearization together with a variant of the jump transfer lemma in GSBD. Based on joint work with Pascal Steinke and Kerrek Stinson.