Speakers
Description
We study the behaviour of a given volume of liquid confined between two rough solid plates. When the separation between the plates is small relative to the liquid volume, capillary bridges are expected to form, which minimise Gauss' capillary energy locally. We derive aΓ-expansion for the energy as the plate separation approaches zero, yielding a dimensionally reduced problem in terms of the wetted regions on the plates. At leading order, the energy is determined by the area of the wetted regions, while the second-order term is given by their perimeter, weighted by appropriate functions of the relative adhesion coefficients. This provides a framework for a successive phase-field approximation, which is employed in numerical simulations to study the evolution of the droplets under the normal and shear movement of the plates.