3D-bioprinted bionic pancreas as an innovative method of treating and preventing diabetes – how far we are from clinical aplication?

Speaker

Wszoła, Michał (Polbionica)

Description

"Introduction
Type 1 diabetes (T1D) is a disease, which affects milions of patients. Islet or pancreatic transplantation is a method of treating complicated T1D. The limitation of these methods is the lack of organs for transplantation. 3D-bioprinting using living cells could be a solution. We present results of bioprinted bionic pancreas on mouse and pig model.

Materials and Methods
Research was carried out on 60 mice (SCID) and 24 pigs. The mice were divided into 3 groups: control; IsletTx in which porcine pancreatic islets were transplanted under the renal capsule; 3D-bioprint in which bioink petals consisted of bioink A and porcine islets. The bioprinted petals were transplanted into the dorsal part of the muscles under the skin in mice. Daily glucose measurement was performed and the level of C-peptide was tested every 7-days.
The pigs were divided into 4 groups: control, diabetic group(pancreatectomy-T1D); with transplanted 3D-bioprinted bionic petals(TX-with previous pancreatectomy), pigs with transplanted 3D-bioprinted bionic organ with full vasculature. The animals were measured daily with blood glucose levels (from 5-20 measurements per day). 3D-bioprinted bionic pancreas were transplanted in some animals to the iliac vessels and in other subgroup to the aorta and vena cava.

Results and Discussion
The results obtained in mice initially showed no differences in the concentration of peptide-C and glucose between groups. However, as early as 7-days after transplantation, both parameters analyzed in the fasting state were significantly lower in the IsletsTx and 3Dbioprinted groups compared to the control group. On day 14, decreased values of C-peptide and glucose were observed only in the group with petals transplants.
Mean glucose levels were two times lower, compared to the period before petals transplantation. In addition, TX pigs required lower doses of insulin after petals implantation. After transplantation of 3D-bioprinted bionic pancreas, a stable flow through the organ was observed in vivo and after the excision of the organ.

Conclusions
Transplantation of bionic petals in mice and pigs resulted in a decrease in mean glucose levels. None of the animals died due to postoperative complications or the lack of biocompatibility with the bionic structure. Transplantation of fully vascularized organ created with 3D-bioprinting technology id feasible.

Acknowledgments
Project „3D – BIOPRINTING OF SCAFFOLDS USING PANCREATIC ISLETS OR INSULIN PRODUCING CELLS IN ORDER TO CREATE BIONIC PANCREAS.” funded by National Center for Research and Development in the framework of the programme „Prevention and Treatment of Civilization Diseases"" STRATEGMED. Timeframe: 01.01.2017 – 30.06.2021
Accomplished by the Bionic Consortium - Foundation of Research and Science Development, Medical University of Warsaw, Warsaw University of Technology, Nencki Institute, MediSpace sp. Z o.o."

20967801564

Presentation materials

There are no materials yet.