Ginjaume, Albert (University of Manchester )



With a growing demand for effective regenerative medicine therapies, more sophisticated tissue-engineered in vitro models are required for a better understanding of the fundamental biological processes that underlie regeneration. To tackle this need and further comprehend these processes, new technologies are emerging in the tissue-engineering field. The state-of-the-art technology of 3D bioprinting aims to achieve well-defined biological structures by printing cell- embedded hydrogels or bioinks in a layer-by-layer manner. A main challenge of 3D bioprinting is the lack of ""soft"" bioinks with a wide printability window, which offer adequate biofabrication properties as well as a cell-friendly extracellular matrix (ECM)-like microenvironment. Thus, allowing the encapsulation and culture of cells in complex in-vitro 3D tissue models1.

Self-assembling peptide hydrogels (SAPHs) are fully defined, semi-synthetic hydrogels, which are biocompatible and with tuneable mechanical properties. Therefore, SAPHs are believed to stand as a powerful option with unique properties that make them perfect candidates for this purpose2. Herein, this research aims to design and explore SAPHs as novel bioinks for extrusion-based 3D bioprinting.


To characterise subject hydrogels, rheological analyses, printability and cytocompatibility tests were carried out using oscillatory rheology, extrusion-based bioprinting and human Mesenchymal Stem Cells (hMSCs), respectively. Rheological analyses showed that our subject peptide-based hydrogels were shear thinning and recovered well under shear stress. Relaxation times fitting curves revealed the characteristic dynamic times in which our hydrogels recovered following a classical mechanical model3. All these rheological findings related to good printability in shape fidelity and integrity analyses. We investigated fibroblast and hMSC viability to assess the biocompatibility of the hydrogels. These studies resulted in SAPHs being promising printable and biocompatible biomaterials for extrusion-based 3D bioprinting with good biofabrication attributes.


We have successfully developed and tested SAPHs as bioinks and assessed cell viability over a 21-day culture period of bioprinted embedded-fibroblast and hMSC hydrogels. An application we are currently exploring, is to investigate if bone differentiation could be induced to determine how capable these constructs are to differentiate into physiologic bone phenotype4. Translated to real-world use, the biofabrication of bone and cartilage models through 3D bioprinting could result as a powerful tool for in vitro disease modelling and to treat bone conditions as osteoarthritis in early stages of the disease.


  1. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. Adv Mater. 2020;32(12).
  2. Raphael B, Khalil T, Workman VL, Smith A, Brown CP, Streuli C, et al. 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater Lett [Internet]. 2017;190:103–6.
  3. Wychowaniec JK, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules. 2020;21(6):2285–97.
  4. Castillo Diaz LA, Elsawy M, Saiani A, Gough JE, Miller AF. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel. J Tissue Eng. 2016;7.


Presentation materials

There are no materials yet.