23–26 Jul 2024
Europe/Lisbon timezone

The effects of wireless inductive charging of electric vehicles on asphalt pavement materials

24 Jul 2024, 15:00
15m
Room B

Room B

Speaker

Douglas Wilson (University of Auckland, Department of Civil and Environmental Engineering, Auckland, New Zealand)

Description

Abstract. There is significant attention given by governments and industry to reducing tail-pipe emissions from Internal Combustion Engines (ICE) in transport system vehicle fleets. The transport sector is one of the largest sources of greenhouse gas emissions and is responsible for approximately one-third of total CO2 emissions globally which has resulted in intensified global warming and climate change. Transitioning away from reliance on fossil-fuel-based energy to Electric Vehicles (EVs) is now seen as an industry-accepted and ready technology to enable meeting challenging emission reduction plans. Wireless charging of Electric Vehicles (EVs) is seen as part of an important strategy to reduce emissions from essential transport trips of people and goods. Resonant Inductive Power Transfer (IPT) is used in the development of wireless charging systems for in-road charging systems. IPT pads are embedded in a pavement infrastructure to create a magnetic field that is coupled into a similar pad fitted underneath an EV. This is then converted to the voltage and current needed to charge the onboard battery. This method enables EVs to wirelessly receive a charge while stationary or in motion. This presentation will report on transdisciplinary research undertaken at the University of Auckland, New Zealand over the last 7 years to accelerate the user adoption and implementation of electrified transport systems.

Presentation materials

There are no materials yet.