Abstract. This study focuses on the deterioration of road pavement, particularly the formation of rutting, which adversely affects vehicle braking performance, especially in wet conditions. The research aims to predict the combined effects of rutting and intense precipitation on the vehicle braking performances by using a model based on Back-Propagation Neural Network (BPNN) algorithm. The...
Abstract. Road construction is increasingly using reinforcement additives to improve its durability and performance to ultimately achieve a sustainable infrastructure. Fiber reinforced mixtures have been a promising strategy for enhancing asphalt road performance in recent years, this is especially true for novel road structures like porous asphalt (PA). This study's overarching objective is...
Abstract. This study explores the impact of Phase Change Fibres (PCF) in asphalt mixtures on urban heat control and pavement durability, especially under diverse climate conditions. The incorporation of PCF in pavements offers an adaptive response to temperature fluctuations, presenting a prom-ising approach for urban resilience and sustainable infrastructure develop-ment. The research...
Abstract. This study evaluates the impact of various aging conditioning methods, including the newly developed Universal Simple Aging Test (USAT) and Ultraviolet (UV) aging, against the traditional Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV), on the rheological properties of asphalt binder. The results reveal that the effects of RTFO and USAT on asphalt binders are comparable...
Abstract. Asphalt modification has played a crucial role in improving me-chanical characteristics of asphalt mixtures, thereby enhancing performance and extending service life of the asphalt pavements. Different combinations of SBS and LDPE modifier concentrations were investigated in this study. Conventional properties, rutting and fatigue behavior were obtained to evaluate...
Abstract. Bituminous mortar contains aggregates passing 1.18 mm sieve, fillers (material passing 0.075 mm) and bitumen. In general, the bituminous mortar is characterized in torsion using prismoidal (rectangular cross-section) and cylindrical (circular cross-section) specimen geometries. The properties of the material vary with the cross-section of the specimen geom-etry used for testing....